Skip to main content
Log in

Utilization of aromatic compounds by phototrophic purple nonsulfur bacteria

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Biodegradation of aromatic compounds byRhodopseudomonas blastica andRhodospirillum rubrum appears to be lacking in the literature. The above species grew phototrophically (illuminated anaerobic conditions) on a variety of organic compounds. They were found to degrade benzoate, benzyl alcohol, 4-hydroxy-3,5-dimethoxybenzoate (Syringate) and 4-hydroxy-3-methoxybenzoate (vanillate). The ability of the above species to photocatabolize aromatic compounds indicates that these organisms may be ecologically significant as scavengers of aromatic derivatives in illuminated anaerobic habitats in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bache R & Pfennig N (1981) Selective isolation ofAcetobacterium woodii on methoxylated aromatic compounds and determination of growth yields. Arch. Microbiol. 130: 255–261

    Google Scholar 

  • Berry DF, Francis AJ & Bollag JM (1987) Microbial metabolism of homocyclic and heterocyclic aromatic compounds under anaerobic conditions. Microbiol. Rev. 51: 43–59

    Google Scholar 

  • Blasco R & Castillo F (1992) Light-dependent degradation of nitrophenols by the phototrophic bacteriumRhodobacter capsulatus EI F1. Appl. Environ. Microbiol. 58: 690–695

    Google Scholar 

  • Boltz DF, Holland WJ & Howell JA (1978) Methods of determination. In: Colorimetric Determination. John Wiley & Sons, New York

    Google Scholar 

  • Evans WG & Fuchs G (1988) Anaerobic degradation of aromatic compounds. Annu. Rev. Microbiol. 42: 289–317

    Google Scholar 

  • Frazer AC & Young LY (1986) Anacrobic C1 metabolism of the O-methyl-14C-labeled substituent of vanillate. Appl. Environ. Microbiol. 51: 84–87

    Google Scholar 

  • Harwood CS & Gibson J (1988) Anaerobic and aerobic metabolism of diverse aromatic compounds by the photosynthetic bacteriumRhodopseudomonas palustris. Appl. Environ. Microbiol. 54: 712–717

    Google Scholar 

  • Imhoff JF & Trüper HG (1991) The genusRhodospirillum and related genera. In: Balows A, Trüper HG, Dworkin M, Harder W & Schleifer KH (Eds) The Prokaryotes, Vol. III. 2nd edn. (pp 2141–2155) Springer-Verlag Inc., New York

    Google Scholar 

  • Kamal VS & Wyndham RC (1990) Anaerobic phototrophic metabolism of 3-chlorobenzoate byRhodopseudomonas palustris WS 17. Appl. Environ. Microbiol. 56: 3871–3873

    Google Scholar 

  • Leahy JG & Colwell RR (1990) Microbial degradation of hydrocarbons in the environments. Microbiol. Rev. 54: 305–315

    Google Scholar 

  • Liu S & Suflita JM (1993) H2-Co2-dependent anaerobic O-demethylation activity in subsurface sediments and by an isolated bacterium. Appl. Environ. Microbiol. 59: 1325–1331

    Google Scholar 

  • Lowry OH, Rosebrough NI & Randall RS (1951) Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193: 265–275

    Google Scholar 

  • Madigan MT & Gest H (1979) Growth of the photosynthetic bacteriumRhodopseudomonas capsulata chemo autotrophically in darkness with H2 as the energy source. J. Bacteriol 137: 524–530

    Google Scholar 

  • Pfennig N, Eimbjellen KE & Jensen SL (1965) A new isolate of theRhodospirillum fulvum group and its photosynthetic pigments. Arch. Microbiol. 51: 258–266

    Google Scholar 

  • Pfennig N (1978)Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae. Int. J. Syst. Bacteriol. 28: 283–288

    Google Scholar 

  • Quayle JR, Pfennig N (1975) Utilization of methanol by Rhodospirillaceae. Arch. Microbiol. 102: 193–198

    Google Scholar 

  • Sarkanen KV & Ludwig CH (1971) Lignins: Occurrence, formation, structure and reactions. Wiley-Interscience, New York

    Google Scholar 

  • Shoreit AAM, Ahmed AA & Shabeb MSA (1989) Field and laboratory studies on some photosynthetic bacteria in Aswan High Dam Lake II. Isolation and identification of purple nonsulfur bacteria. Int. Revue. Ges. Hydrobiol. 74: 579–583

    Google Scholar 

  • Shoreit AAM, Abd-Alla MH & Shabeb MSA (1992) Acetylene reduction by Rhodospirillaceae from the Aswan High Dam Lake. World J. of Microbiol. and Biotechnol. 8: 151–154

    Google Scholar 

  • Sleat R & Robinson JP (1984) The bacteriology of anaerobic degradation of aromatic compounds. J. Appl. Bacteriol. 57: 381–394

    Google Scholar 

  • Smith JHC & Benitez A (1955) Chlorophylls: analysis in plant materials. In: Paechk & Tracey MV (Eds) Moderne Methoden der Pflanzen Analysis, Vol. IV. (pp 142–196) Springer-Verlag, Berlin

    Google Scholar 

  • Tayeh MA & Madigan MT (1987) Malate dehydrogenase in phototrophic purple bacteria: purification, molecular weight, and quaternary structure. J. Bacteriol. 169: 4196–4202

    Google Scholar 

  • Williams RJ & Evans WC (1975) The metabolism of benzoate by Moraxella spp. through anaerobic nitrate respiration. Biochem. J. 148: 1–10

    Google Scholar 

  • Wright G & Madigan MT (1991) Photocatabolism of aromatic compounds by the phototrophic purple bacteriumRhodomicrobium vannielii. Appl. Environ. Microbiol. 57: 2069–2073

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shoreit, A.A.M., Shabeb, M.S.A. Utilization of aromatic compounds by phototrophic purple nonsulfur bacteria. Biodegradation 5, 71–76 (1994). https://doi.org/10.1007/BF00695216

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00695216

Key words

Navigation