Skip to main content

Biodegradation of Aromatic Compounds by Alkaliphilic Bacteria

  • Chapter
  • First Online:
Bioprospects of Coastal Eubacteria
  • 528 Accesses

Abstract

Eubacteria belonging to diverse genera with the ability to degrade toxic aliphatic and aromatic hydrocarbons along with xenobiotics play an important role in bioremediation. Degradation of aromatic compounds at alkaline pH is significant as alkaliphilic bacteria are more tolerant to toxic compounds and have better bioavailability that can improve the efficiency of biodegradation in control and removal of toxic pollutants. Mangroves are highly reproductive ecosystems which host a wide range of coastal and offshore marine organisms and provide a unique ecological niche for diverse bacterial communities.

In the present study, 141 alkaliphilic bacteria were isolated from mangrove ecosystems of Goa with 20 % being obligate alkaliphiles. 98 % of the cultures were Gram-positive with 54 % of the alkaliphilic cultures belonging to the genus Bacillus, 21 % to Corynebacterium, 7 % each to Micrococcus and Actinomycetes. The only obligate Gram-negative alkaliphile was identified as Flavobacterium on the basis of biochemical and molecular analysis. When screened for degradation of aromatic compounds, all obligate alkaliphiles showed luxuriant growth when supplemented with sodium benzoate, phenol, tyrosine and phenylalanine as a sole source of carbon with few isolates utilising aniline, cresol, resorcinol, quinol and para-chloroaniline. Interestingly, Flavobacterium A-131 exhibited the formation of coloured intermediates when grown in sodium benzoate and tyrosine at alkaline pH. This novel isolate from a mangrove ecosystem, showing growth and metabolism of aromatic compounds at alkaline pH has wide potential in bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-El-Haleem, D., Beshay, U., Abdelhamid, A., Moawad, H., Zaki, S. (2003). Effect of mixed nitrogen sources on biodegradation of phenol by immobilized Acinetobacter sp. strain W-17. African Journal of Biotechnology, 11, 5610–5615.

    Google Scholar 

  • Ahmed T., Othman, M., Sarwade, V., Gawai, K. R. (2012). Degradation of Anthracene by ­alkaliphilic bacterium Bacillus badius. Environment and Pollution, 1, 97–104.

    Article  Google Scholar 

  • Alva, V., & Peyton, B. (2003). Phenol and catechol biodegradation by the haloalkaliphile ­Halomonas campisalis: influence of pH and salinity. Environmental Science and Technology, 37, 4397–4400.

    Article  Google Scholar 

  • Bandhyopadhyay, K., Das, D., Maiti, B. R. (1999). Solid matrix characterization of immobilized Pseudomonas putida MTCC 1194 used for phenol degradation. Applied Microbiology and Biotechnology, 51, 891–895.

    Article  Google Scholar 

  • Banulescu, S. (2000). What Michael Jackson didn’t know about melanin. http:www.medicine.viowa.edu/frrb/education/Freeradical/sp01/Paper%203/BanulescuS-paper3.pdf, Iow. Accessed 8 March 2001.

  • Barnett, J. A., & Hegeman, J. H. (1983). Characterisation of a brown pigment from Bacillus ­subtilis culture. Canadian Journal of Microbiology, 29, 309–315.

    Article  Google Scholar 

  • Bayley, R. C., & Barbour, M. G. (1984). The degradation of aromatic compounds by meta and ­gentisate pathways: biochemistry and regulation. In D. T. Gibson (Ed.), Microbial ­degradation of organic compounds. Microbiology Series (vol. 13., pp. 253–294). New York: Marcel Dekker.

    Google Scholar 

  • Blackburn, J. W., & Hafker, W. R. (1993). The impact of biochemistry, bioavailability and ­bioactivity on the selection of bioremediation techniques. Trends in Biotechnology, 11, ­328–333.

    Article  Google Scholar 

  • Bouwer, E. J., & Zchendir, A. J. B. (1993). Bioremediation of organic compounds: microbial ­metabolism to work. Trends in Biotechnology, 11, 360–367.

    Article  Google Scholar 

  • Chapman, P. J. (1972). An outline of reaction sequence used for the bacterial degradation of ­phenolic compounds. In Degradation of synthetic organic molecules in the biosphere (pp. ­17–55). Washington: National Academy of Sciences.

    Google Scholar 

  • Chen, W., Bruhlmann, F., Richis, R. D., Mulchandani, A. (1999). Engineering of improved ­microbes and enzymes for bioremediation. Current Opinion in Biotechnology, 10, 137–141.

    Article  Google Scholar 

  • Clement, P. D., Pieper, H., Gonzalez, B. (2001). Molecular characterization of a deletion/duplication rearrangement in tfd genes from Ralstonia eutrophus JMO 134 (pJP4) that improves growth on 3-chlorobenzoic acid but abolishes growth on 2,4-dichlorophenoxyacetic acid.­ ­Microbiology, 147, 2141–2148.

    Google Scholar 

  • Crawford, R. L., Hutton, S. W., Chapman, P. J. (1975). Purification properties of gentisate 1,2-dioxygenase from Moraxella osloensis. Journal of Bacteriology, 121, 794–799.

    Google Scholar 

  • Dagley, S. (1971). Catabolism of aromatic compounds by microorganisms. In A. H. Rose, J. F. Wilkinson (Eds.), Advances in microbial physiology (vol. 6., pp. 1–46). London: Academic.

    Google Scholar 

  • Desai, R. S., Krishnamurthy, N. K., Mavinkurve, S., Bhosle, S. (2004). Alkaliphiles in estuarine mangrove regions of Goa, (Central west coast of India). Indian Journal of Marine Sciences, 33, 177–180.

    Google Scholar 

  • De Souza, M. L., Wackett, L. P., Sadowsky, M. J. (1998). The atz ABC genes encoding atrazine catabolism are located on a self-transmissible plasmid in Pseudomonas sp. strain ADP. Applied and Environmental Microbiology, 64, 2323–2326.

    Google Scholar 

  • Dickel, D., Haug, W., Knackmus, H. J. (1993). Biodegradation of nitrobenzene by a sequential anaerobic–aerobic process. Biodegradation, 4, 187–194.

    Article  Google Scholar 

  • Djordjeric, S. P., Chen, H., Batley, M., Redmond, T. W., Rolfer, B. G. (1987). Nitrogen fixing ­ability of exopolysaccharide synthesis mutants of Rhizobium sp strain NGR 234 and ­Rhizobium trifolin is restored by addition of hamologens exopolysaccharide. Applied and Environmental Microbiology, 169, 53–60.

    Google Scholar 

  • Ellis, B. M. L. (2000). Environmental biotechnology informatics. Current Opinion in Biotechnology, 11, 232–235.

    Article  Google Scholar 

  • Evans, W. C. (1971). Oxidation of phenol and benzoic acid by some soil bacteria. Journal of ­Biochemistry, 41, 373–382.

    Google Scholar 

  • Feist, C. F., & Hegeman, G. D. (1969). Phenol and benzoate metabolism by Pseudomonas putida: regulation of tangential pathways. Journal of Bacteriology, 100, 869–877.

    Google Scholar 

  • Finley, K. T. (1974). The addition and substitution chemistry of quinones. In S. Patai (Ed.), The chemistry of quinonoid compounds (vol. 1., pp. 877–1144). London: An Interscience Publication.

    Google Scholar 

  • Fuenmayor, S. L., Wild, M., Boyles, L., Williams, P. A. (1998). A gene cluster encoding steps in the conversion of naphthalene to gentisate in Pseudomonas sp. strain U2. Journal of Bacteriology, 180, 2522–2530.

    Google Scholar 

  • Fukumori, F., & Saint, C. P. (1997). Nucleotide sequence and regulational analysis of genes involved in conversion of aniline to catechol in Pseudomonas putida UCC22 (pTDN1). Journal of Bacteriology, 179, 399–408.

    Google Scholar 

  • Garcia, M. L., Guffanti, A. A., Krulwich, T. A. (1983). Characterization of the Na + /H + antiporter of alkalophilic bacilli in vivo: ∆ψ-dependent22 Na + efflux from starved cells. Journal of ­Bacteriology, 156, 1151–1157.

    Google Scholar 

  • Gee, J. M., Lund, B. M., Metacalf, G., Peel, J. L. (1980). Properties of a new group of alkaliphilic bacteria. Journal of General Microbiology, 117, 9–17.

    Google Scholar 

  • Gibson, D. T., & Subramanian, V. (1984). Microbial degradation of aromatic compounds. In D.T. Gibson (Ed.), Microbial degradation of organic compounds. Microbioloy Series (vol. 13., pp. 181–252). New York: Marcel Dekker.

    Google Scholar 

  • Goodwin, T. W. (1979). Chemistry and biochemistry of plant pigments (2nd edn., pp. 207–231). London: Academic

    Google Scholar 

  • Harpel, M. R., & Lipscomb, J. D. (1990). Gentisate 1,2-dioxygenase from Pseudomonas: ­purification, characterization and comparison of enzymes from Pseudomonas testosteroni and Pseudomonas acidovarans. Journal of Biological Chemistry, 265, 6301–6311.

    Google Scholar 

  • Hay, A. G., Dees, P. M., Sayler, G. S. (2001). Growth of a bacterial consortium on triclosan. FEMS Microbiology Ecology, 36, 105–112.

    Article  Google Scholar 

  • Hayaishi, O. (1966). Crystalline oxygenase of Pseudomonads. Bacteriological Reviews, 30, ­720–731.

    Google Scholar 

  • Hearing, V. J. Jr. (1987). Mammalian monophenol monooxygenase (Tyrosinase): Purification, properties and reactions catalysed. In S. Kaufmen (Ed.), Metabolism of aromatic amino acids and amines (vol. 142., pp. 154–165). Methods in Enzymology, Elsevier Inc.

    Google Scholar 

  • Horikoshi, K. (1991). Microorganisms in alkaline environments. New York: VCH.

    Google Scholar 

  • Hughes, E. T. L., Bayley, R. C., Skurray, R. A. (1984). Characterisation of a TOL-like plasmid from Alcaligenes eutrophus which controls expression of a chromosomally encoded p-cresol pathway. Journal of Bacteriology, 107, 468–475.

    Google Scholar 

  • Janssen, D. B., Oppentocht, V. E., Poelarands, G. (2001). Microbial dehalogenation. Current ­Opinion in Biotechnology, 12, 254–258.

    Article  Google Scholar 

  • Johan, E. T., Vlieg, V. H., Janssen, D. B. (2001). Formation and detoxification of reactive ­intermediates in the metabolites of chloroniated ethenes. Journal of Biotechnology, 85, 81–102.

    Article  Google Scholar 

  • Kanekar, P. P., Sarnaik, S. S., Kelkar, A. S. (1999). Bioremediation of phenol by alkaliphilic ­bacteria isolated from alkaline lake of Lonar, India. Journal of Applied Microbiology ­Symposium ­supplement, 85, 128–133.

    Google Scholar 

  • Kataeva, I. A., & Golovlea, L. A. (1990). Catechol 2,3-dioxygenase from Pseudomonas aeuroginosa. In M.E. Lidstrom (Ed.), Hydrocarbons and methylotrophy (vol. 188, pp. 115–121). Methods in Enzymology, Elsevier Inc.

    Google Scholar 

  • Kazumi, J., Haggblom, M., Young, L. Y. (1995). Degradation of monochlorinated and non-chlorinated aromatic compounds under iron reducing conditions. Applied and Environmental Microbiology, 61, 4069–4073.

    Google Scholar 

  • Kelley, S. K., Coyne, V. E., Sledjeski, D. D., Funqua, W. C., Weiner, R. M. (1990). Identification of tyrosinase from a periphytic marine bacterium. FEMS Microbiology Letters, 67, 275–280.

    Article  Google Scholar 

  • Kimura, N., & Tsuge, T. (1993). Gene cluster involved in melanin biosynthesis of the filamentous fungus Alternaria alternata. Journal of Bacteriology, 175, 4427–4435.

    Google Scholar 

  • Kimura, H., Okamura, A., Kawaide, H. (1994). Oxidation of 3-, 7-, and 12-hydroxyl groups of cholic acid by an alkalophi1ic Bacillus sp. Bioscience Biotechno1ogy and Biochemistry, 58, 1002–1006.

    Google Scholar 

  • Kiran, B. S (2009). Distribution and biodegradation of PAH in contaminated sites of Hisar (India). Indian Journal of Experimental Biology, 47, 210–217.

    Google Scholar 

  • Kleinsteuber, S., Muller, R., Babel, W. (2001). Expression of the 2, 4-D degradative pathwayof pJP4 in an alkaliphilic moderately halophilic soda lake isolate Halomonas sp. EF-43. ­Extremophiles, 5, 375–384.

    Article  Google Scholar 

  • Kojima, Y., Itada, N., Hayaishi, O. (1961). Metapyrocatechase: a new catechol cleavage enzyme. Journal of Biological Chemistry, 236, 2223–2228.

    Google Scholar 

  • Krulwich, T. A. (1995). Alkaliphiles: ‘basic’ molecular problems of pH tolerance and bioenergetics. Molecular Microbiology, 15, 403–410.

    Article  Google Scholar 

  • Krulwich, T. A., & Guffanti, A. A. (1989). Alkalophilic bacteria. Annual Reviews of Microbiology, 43, 435–463.

    Article  Google Scholar 

  • Lerch, K. (1987). Monophenol monooxygenase from Neurospora crassa. In S. Kaufman (Ed.), Metabolism of aromatic amino acids and amines (vol. 142, pp. 165–169). Methods in Enzymology, Elsevier Inc.

    Google Scholar 

  • Liu, S., & Suflita, J. M. (1993). Ecology and evolution of microbial populations for bioremediation. Trends in Biotechnology, 11, 344–352.

    Article  Google Scholar 

  • Loidl, M., Hinteregger, C., Ditzelmueller, G., Ferschl, A., Streichsbier, F. (1990). Degradation of aniline and monochlorinated anilines by soil borne Pseudomonas acidovorans strains. Archvies of Microbiology, 155, 56–61.

    Article  Google Scholar 

  • Maeda, M., Roberts, M., Ohta, Y., Fuji, F., Travisano, M., Kudo, T. (1998). Isolation and ­characterization of a new aromatic compound degrading alkalotrophic bacteria. The Journal of General and Applied Microbiology, 44, 101–106.

    Article  Google Scholar 

  • Margalith, P.Z. (1992). Melanin pigments. In Pigment microbiology (pp. 1–29). London: Chapman and Hall.

    Google Scholar 

  • Margesin, R., & Schinner, F. (2001). Biodegradation and bioremediation of hydrocarbons in ­extreme environments. Applied Microbiology and Biotechnology, 56, 650–663.

    Article  Google Scholar 

  • Mason, H. S. (1953). Melanin pigments. In Myron Gordon (Edn). Pigment Cell Biology, 563–682. Academic Press New-York.

    Google Scholar 

  • Mayer, A. M., & Hazel, E. (1979). Polyphenol oxidases in plants. Phytochemistry, 18, 193–215.

    Article  Google Scholar 

  • Mishra, V., Lal, R., Srinivasan, S. (2001). Enzymes and operons mediating xenobiotic degradation in bacteria. Critical Reviews in Microbiology, 27, 133–166.

    Article  Google Scholar 

  • Murray, K., & Williams, P. A. (1974). Role of catechol and methylcatechol as inducers of aromatic metabolism in Pseudomonas putida. Journal of Bacteriology, 117, 1153–1157.

    Google Scholar 

  • Nakazawa, T., & Nakazawa, A. (1970). Pyrocatechase (Pseudomonas) In H. Tabor, C.W. Tabor (Eds.), Methods in enzymology (vol. 17A, pp. 518). New York: Academic.

    Google Scholar 

  • Nakazawa, T., & Yokoto, T. (1973). Benzoate metabolism in Pseudomonas putida (arvilla) mt-2. Demonstration of two tangential pathways. Journal of Bacteriology, 115, 161–167.

    Google Scholar 

  • Nakazawa, T., Nozaki, M., Hayaishi, O., Yamano, T. (1969). Studies on pyrocatechase II. ­Electrom spin resonance and other properties of iron in the active center. Journal of Biological ­Chemistry, 244, 119–125.

    Google Scholar 

  • Offlow, J. C. G., & Zolg, W. (1974). Improved procedure and colorimetric test for detection of ortho and meta cleavage of protocatechuic acid by Pseudomonas sp. Canadian Journal of Microbiology, 20, 1059–1061.

    Article  Google Scholar 

  • O’Leary, J. (1976). Aromatic compounds. In, contemporary organic chemistry (pp. 281–304).New York: Mc Graw Hill.

    Google Scholar 

  • Ornston, L. N. (1971). The conversion of catechol and protocatechuate to β-ketoadipate by ­Pseudomonas putida IV. Regulation. Journal of Biological Chemistry, 241, 3800–3811.

    Google Scholar 

  • Poelarends, G. T., Zandstra, M., Bosma, T., Kulakov, A., Larkin, M. J., Marchesi, J. R., ­Weightman, A. J., Jannsen, D. (2000). Haloalkane-utilizing Rhodococcus strain isolated from geographically distinct locations possess a highly conserved gene cluster encoding haloalkane catabolism. Journal of Bacteriology, 182, 2725–2731.

    Article  Google Scholar 

  • Poh, C. L., & Bayley, R. C. (1980). Evidence for isofunctional enzymes used in m-cresol and 2,5-xylenol degradation via the gentisate pathway in Pseudomonas alcaligenes. Journal of Bacteriology, 143, 59–69.

    Google Scholar 

  • Pomerantz, S. H. (1966). The tyrosinase hydroxylase activity of mammalian tyrosinase. Journal of Biological Chemistry, 241, 161–168.

    Google Scholar 

  • Ramanathan, A. L., Singh, G., Mujumdar, J., Samal, A. C., Chauhan, R., Ranjan, R. K., Rajkumar, K., Santra, S. C. (2008). A study of microbial diversity and its interaction with nutrients in ­sediments of Sunderban mangroves. Indian Journal of Marine Sciences, 37, 159–165.

    Google Scholar 

  • Robertson, A. I. (1992). Tropical mangrove ecosystems. American Physiological Union. http://www.earthisland.org/map/mangee.htm. Accessed 8 March 2001.

  • Ryoo, D., Shim, H., Canada, K., Barberi, P., Wood, T. K. (2000). Aerobic degradation of tetrachloroethylene by toluene-o-monooxygenase of Pseudomonas stutzeri OX1. Nature Biotechnology, 18, 775–778.

    Article  Google Scholar 

  • Ryoo, D., Shim, H., Arenghi, F. L. G., Barberi, P., Wood, T. K. (2001). Tetrochloroethylene, ­trichloroethylene and chlorinated phenols induce toluene-o-monooxygenase activity in ­Pseudomonas stutzeri UX1. Applied Microbiology and Biotechnology, 56, 545–549.

    Article  Google Scholar 

  • Sadasivan, L., & Neyra, C. A. (1987). Cyst production and brown pigment formation in aging cultures of Azospirillum brasilence ATCC 29145. Journal of Bacteriology, 169, 1670–1679.

    Google Scholar 

  • Sala, T., & Evans (1971). The meta-cleavage of catechol by Azotobacter species, 4-oxalocrotonate pathway. European Journal of Biochemistry, 20(3), 400–413.

    Google Scholar 

  • Sala-Trepat, J. M., Murray, K., Williams, P. A. (1972). The metabolic divergence in the meta ­cleavage of catechols by Pseudomonas putida NCIB 10015. European Journal of Biochemistry, 28, 347–356.

    Article  Google Scholar 

  • Sangodkar, U. M. X., Aldrich, T. L., Haugland, R. A., Janson, J., Rathmol, R. K., Chapman, P. J., Chakrabarty, A. M. (1989). Molecular basis of biodegradation of chloroaromatic compounds. Acta Biotechnologica, 9, 301–316.

    Article  Google Scholar 

  • Shimao, M., Onishi, S., Mizumori, S., Kato, N., Sakazawa, C. (1989). Degradation of G-chlorobenzoate by facultatively alkaliphilic Arthrobacter sp. Applied and Environmental ­Microbiology, 55, 478–482.

    Google Scholar 

  • Shivprasad, S., & Page, W. J. (1989). Catechol formation and melanisation by Na + ­dependent ­Azotobacter chroococcum: a protective mechanism of aeroadaptation. Applied and ­Environmental Microbiology, 55, 1811–1817.

    Google Scholar 

  • Smejkal, C.W., Vallaeys, T., Burton, K., Lappin-Scott, H.M. (2001). Characteisation of (R/S)-mecoprop [2-(2-methyl-4-chlorophenoxy) propionic acid]-degrading Alcaligenes sp. CS1 and Ralstonia sp. CS2 isolate from agricultural soils. Environmental Microbiology, 3, 288–293.

    Article  Google Scholar 

  • Sorokin, D.Y., Tourova, T., Lysenko, A., Kuenan, G. (2001). Microbial thiocyanate utilization under highly alkaline conditions. Applied and Environmental Microbiology, 67, 528–538.

    Article  Google Scholar 

  • Stanier, R. Y., & Ornston, L. N. (1973). The β-ketodipate pathway. Advances in Microbial ­Physiology, 9, 89–151.

    Article  Google Scholar 

  • Stevens, L. H., Pavelaar, E., Kolb, R. M., Pennings, Ed J. M., Smit, N. P. M. (1998). Tyrosine and cysteine are substances for black spot synthesis in potato. Phytochemistry, 49, 703–707.

    Article  Google Scholar 

  • Tanghe, T., Phooge, W., Verstraete, W. (1999). Isolation of bacterial strain able to degrade branched nonylphenol. Applied and Environmental Microbiology, 65, 746–751.

    Google Scholar 

  • Ushiba, Y., Takahora, Y., Ohta, H. (2003). Sphingobium amiense sp. nov., a novel nonylphenol degrading bacterium isolated from a river sediment. International Journal of Systematic and Evolutionary Microbiology, 53, 2045–2048.

    Article  Google Scholar 

  • Wackett, L. P., Sadowsky M. J., Martinez, B., Shapir, N. (2002). Biodegradation of atrazine and related s-triazine compounds: from enzymes to filed studies. Applied Microbiology and ­Biotechnology, 58, 39–45.

    Article  Google Scholar 

  • Wang X. B, Chi, N. Y., Tang, Y. Q., Tan, Y., Wu, G., Wu, X. L. (2011). Degradation of petroleum hydrocarbons (C6–C40) and crude oil by a novel Dietzia strain. Bioresource Technology, 102, 7755–7761.

    Article  Google Scholar 

  • Watanabe, K. (2001). Microorganisms relevant to bioremediation. Current Opinion in Biotechnology, 12, 237–241.

    Article  Google Scholar 

  • Whiteley, A. S., & Bailey, M. J. (2000). Bacterial community structure and physiological state within an industrial phenol bioremediation system. Applied and Environmental Microbiology, 66, 2400–2407.

    Article  Google Scholar 

  • Williams, P. A., & Murray, K. (1974). Metabolism of benzoate and the methylbenzoates by ­Pseudomonas putida (arvilla) mt-2; evidence for the existence of a TOL plasmid. Journal of Bacteriology, 120, 416–423.

    Google Scholar 

  • Yumoto, I., Yamaga, S., Sogabe, Y., Nodasaka, Y., Matsuyama, H., Nakajima, K., Suemori, A. (2003). Bacillus krulwichiae sp. nov., a halotolerant obligate alkaliphile that utilizes benzoate and m-hydroxybenzoate. International Journal of Systematic and Evolutionary Microbiology, 53, 1531–1536.

    Article  Google Scholar 

  • Zeyer, J., Wasserfallen, A., Timmis, K. (1985). Microbial mineralisation of ring-substituted aniline through an ortho-cleavage pathway. Applied and Environmental Microbiology, 5, 447–453.

    Google Scholar 

  • Zylstra, G. J., Bang, S. W., Newman, L. M., Perry, L. L. (2000). Microbial degradation of mononitrophenols and mononitrobenzoates. In J. C. Spain, J. B. Hughes, H. J. Knackmuss (Eds.), Biodegradation of nitroaromatic compounds and explosives (pp. 145–184). Boca Raton: CRC.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasika Desai Gaokar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Desai Gaokar, R. (2015). Biodegradation of Aromatic Compounds by Alkaliphilic Bacteria. In: Borkar, S. (eds) Bioprospects of Coastal Eubacteria. Springer, Cham. https://doi.org/10.1007/978-3-319-12910-5_5

Download citation

Publish with us

Policies and ethics