Skip to main content
Log in

2-Hydroxychromene-2-carboxylate isomerase from bacteria that degrade naphthalenesulfonates

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

2-Hydroxychromene-2-carboxylate isomerase activity was found in cell-free systems from bacteria that degrade naphthalenesulfonates. The enzyme fromPseudomonas testosteroni A3 was activated by incubation with glutathione, dithiothreitol or mercaptoethanol. The highest enzyme activity was found after preincubation of the enzyme with glutathione at alkaline pH-values. A highly purified enzyme preparation converted besides 2-hydroxychromene-2-carboxylate also 2-hydroxybenzo[g]chromene-2-carboxylate (the 2-hydroxychromene-2-carboxylate formed from 1,2-dihydroxyanthracen). The addition of various metal ions or EDTA did not significantly change the catalytic activity of the enzyme. A possible reaction mechanism is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

2,5-DHCCA:

2,5-dihydroxychromene-2-carboxylate

2,6-DHCCA:

2,6-dihydroxychromene-2-carboxylate

1,2-DHN:

1,2-dihydroxynaphthalene

GSH:

glutathione

2HBCCA:

2-hydroxybenzo[g]chromene-2-carboxylate

HBP:

2′-hydroxybenzalpyruvate

HBPA:

2′-hydroxybenzalpyruvate aldolase

2HCCA:

2-hydroxychromene-2-carboxylate

2HCCAI:

2-hydroxychromene-2-carboxylate isomerase

2NS:

naphthalene-2-sulfonate

Rt :

retention time

References

  • Barnsley EA (1976) Naphthalene metabolism by pseudomonads: the oxidation of 1,2-dihydroxynaphthalene to 2-hydroxychromene-2-carboxylic acid and the formation of 2′-hydroxybenzalpyruvate. Biochem. Biophys. Res. Comm. 72: 1116–1121

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248–254

    Google Scholar 

  • Brilon C, Beckmann W, Hellwig M & Knackmuss H-J (1981a) Enrichment and isolation of naphthalenesulfonic acid-utilizing pseudomonads. Appl. Environ. Microbiol. 42: 39–43

    Google Scholar 

  • Brilon C, Beckmann W & Knackmuss H-J (1981b) Catabolism of naphthalenesulfonic acids byPseudomonas sp. A3 andPseudomonas sp. C22. Appl. Environ. Microbiol. 42: 44–55

    Google Scholar 

  • Davies JI & Evans WC (1964) Oxidative metabolism of naphthalene by soil pseudomonads. The ring-fission mechanism. Biochem. J. 91: 251–261

    Google Scholar 

  • Dua RD & Rao V (1986) Production oftrans-o-hydroxybenzalpyruvate from 1,2-dihydroxynaphthalene by cell-free extracts ofCorynebacterium renale. Indian J. Biochem. Biophys. 23: 110–113

    Google Scholar 

  • Eaton RW & Chapman PJ (1992) Bacterial metabolism of naphthalene: construction and use of recombinant bacteria to study ring cleavage of 1,2-dihydroxynaphthalene and subsequent reactions. J. Bacteriol. 174: 7542–7554

    Google Scholar 

  • Evans WC, Fernley HN & Griffiths E (1965) Oxidative metabolism of phenanthrene and anthracene by soil pseudomonads. The ring-fission mechanisms. Biochem. J. 95: 819–831

    Google Scholar 

  • Fernley HN & Evans WC (1958) Oxidative metabolism of polycyclic hydrocarbons by soil pseudomonads. Nature 182: 373–374

    Google Scholar 

  • Kodama K, Umehara K, Shimizu K, Nakatani S, Minoda Y & Yamada K (1973) Identification of microbial products from dibenzothiophene and its proposed oxidation pathway. Agr. Biol. Chem. 37: 45–50

    Google Scholar 

  • Kuhm AE, Schlömann M, Knackmuss H-J & Pieper DH (1990) Purification and characterization of dichloromuconate cycloisomerase fromAlcaligenes eutrophus JMP 134. Biochem. J. 266: 877–883

    Google Scholar 

  • Kuhm AE, Stolz A, Ngai K-L & Knackmuss H-J (1991) Purification and characterization of a 1,2-dihydroxynaphthalene dioxygenase from a bacterium that degrades naphthalenesulfonates. J. Bacteriol. 173: 3795–3802

    Google Scholar 

  • Kuhm AE, Knackmuss H-J & Stolz A (1993) Purification and properties of 2′-hydroxybenzalpyruvate aldolase from a bacterium that degrades naphthalenesulfonates. J. Biol. Chem. 268: 9484–9489

    Google Scholar 

  • Lack L (1961) Enzymiccis-trans isomerization of maleylpyruvic acid. J. Biol. Chem 236: 2835–2840

    Google Scholar 

  • Monticello DJ, Bakker D & Finnerty WR (1985) Plasmid-mediated degradation of dibenzothiophene byPseudomonas species. Appl. Environ. Microbiol. 49: 756–760

    Google Scholar 

  • Nörtemann B, Baumgarten J, Rast HG & Knackmuss H-J (1986) Bacterial communities degrading amino- and hydroxynaphthalene-2-sulfonates. Appl. Environ. Microbiol. 52: 1195–1202

    Google Scholar 

  • Palmer T (1985) Understanding enzymes. Ellis Horwood Publishers, Chichester

    Google Scholar 

  • Patel TR & Gibson DT (1974) Purification and properties of(+)-cis-naphthalene dihydrodiol dehydrogenase ofPseudomonas putida. J. Bacteriol. 119: 879–888

    Google Scholar 

  • Patel TR & Barnsley EA (1980) Naphthalene metabolism by pseudomonads: purification and properties of 1,2-dihydroxynaphthalene oxygenase. J. Bacteriol. 143: 668–673

    Google Scholar 

  • Pfennig N & Lippert KD (1966) Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch. Mikrobiol. 55: 245–256

    Google Scholar 

  • Seltzer S & Lin M (1979) Maleylacetonecis-trans-isomerase. Mechanism of the interaction of coenzyme glutathione and substrate maleylacetone in the presence and absence of enzyme. J. Am. Chem. Soc. 101: 3091–3097

    Google Scholar 

  • Walter U, Beyer M, Klein J & Rehm H-J (1991) Degradation of pyrene byRhodococcus sp. UW1. Appl. Microbiol. Biotechnol. 34: 671–676

    Google Scholar 

  • Yen K-M & Gunsalus IC (1982) Plasmid gene organization: naphthalene/salicylate oxidation. Proc. Natl. Acad. Sci. U.S.A. 79: 874–878

    Google Scholar 

  • Yen K-M & Serdar CM (1988) Genetics of naphthalene catabolism in pseudomonads. CRC Crit. Rev. Microbiol. 15: 247–267

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhm, A.E., Knackmuss, HJ. & Stolz, A. 2-Hydroxychromene-2-carboxylate isomerase from bacteria that degrade naphthalenesulfonates. Biodegradation 4, 155–162 (1993). https://doi.org/10.1007/BF00695117

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00695117

Key words

Navigation