Skip to main content
Log in

Anaerobiosis and the oxygen debt in an anuran amphibian,Rana esculenta (L.)

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. (1)

    Artificially ventilated curarised frogs consumed 23% less oxygen than animals breathing naturally but their respiratory quotient was significantly increased. Artificial ventilation maintained arterial oxygen tension at normal levels but arterial carbon dioxide tension fell significantly. When 90% of the haemoglobin was combined with carbon monoxide oxygen consumption was reduced by 40% and the respiratory quotient was increased.

  2. (2)

    During apnoea both normal animals and those exposed to carbon monoxide showed reductions in oxygen uptake of about 45%. Heart rate also declined by 20–40%. During apnoea respiratory quotient of both groups of animals was significantly elevated. In normal animals arterial and venous oxygen tensions fell during apnoea, arterial tensions to 20% of the ventilation value and venous oxygen tensions to a slightly higher value. Arterial oxygen content fell from 9.6 vols % to 3 vols %. Arterial carbon dioxide tensions and contents increased during the apnoea and arterial pH fell.

  3. (3)

    When ventilation was restored frogs consumed about 109–130 μl more oxygen in the first 10 min than in comparable periods before the apnoea. However, animals with 90% of the haemoglobin combined with carbon monoxide showed only a gradual return to the pre-apnoeic level of oxygen consumption. Heart rate, respiratory quotient and blood gas tensions returned to pre-apnoeic levels within 30 min of the resumption of artificial ventilation. The excess oxygen consumed during the first 10 min was equal to the amount of oxygen calculated to have been removed from the oxygen store of the blood during apnoea.

  4. (4)

    It is concluded that the blood has a function in maintaining oxygen metabolism in both ventilated and apnoeic frogs but that oxygen stores, including that of the blood, make little contribution to oxygen metabolism during apnoea and appear to be replenished immediately lung ventilation is restored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, H. T.: The elicitation of physiological responses to diving. Oslo: Universitetsforlaget, 1963.

    Google Scholar 

  • Andersen, H. T.: Physiological adaptations in diving vertebrates. Physiol. Rev.46 (2), 212–243 (1966).

    Google Scholar 

  • Andersen, H. T., Hustvedt, B. E., Løvø, A.: Acid-base changes in diving ducks. Acta physiol. scand.63, 128–132 (1965).

    Google Scholar 

  • Aubert, H.: Über den Einfluß der Temperatur auf die Kohlensäure Ausscheidung und die Lebensfähigkeit der Frösche in sauerstoffloser Luft. Arch. Anat. Physiol.26, 293–323 (1881).

    Google Scholar 

  • Belkin, D.: Anaerobiosis in diving turtles. (Abstract). Physiologist5, 105–112 (1962).

    Google Scholar 

  • Blazka, P.: The anaerobic metabolism of fish. Physiol. Zool.31, 117–128 (1958).

    Google Scholar 

  • Bohr, C.: Über die Haut- und Lungenatmung der Frösche. Skand. Arch. Physiol.10, 74 (1900).

    Google Scholar 

  • Czopek, J.: The vascularization of the respiratory surfaces of some Salientia. Zoologica Pol.6, 101–134 (1955).

    Google Scholar 

  • Czopek, J.: Vascularization of respiratory surfaces in some Caudata. Copeia, 576–587 (1962).

  • Derrickson, M. B., Amberson, W. R.: Blood volume in lower vertebrates. Biol. Bull. Woods Hole67, 329–345 (1934).

    Google Scholar 

  • Dolk, H. E., Postma, N.: Über die Haut- und die Lungenatmung vonRana temporaria. Z. vergl. Physiol.5, 417–444 (1927).

    Google Scholar 

  • Gahlenbeck, H., Bartels, H.: Temperatur Adaptation der Sauerstoffaffinität des Blutes vonRana esculenta L. Z. vergl. Physiol.59, 232–240 (1968).

    Google Scholar 

  • Graaf, A. R. de: Investigations into the distribution of blood in the heart and aortic arches ofXenopus laevis (Daud). J. exp. Biol.34, (2), 143–172 (1957).

    Google Scholar 

  • Graaf, A. R. de: A note on the oxygen requirements ofXenopus laevis. J. exp. Biol.34 (2), 173–176 (1957).

    Google Scholar 

  • Grehant: C. R. Soc. Biol. (Paris)39, 198 (1887). (cited by Nicloux, 1923).

    Google Scholar 

  • Hall, F. G.: Hemoglobin functions in the blood ofBufo marinus. J. cell. Physiol.68 (1), 69–74 (1966).

    Google Scholar 

  • Hemmingsen, A.: Energy metabolism as related to body size and respiratory surfaces and its evolution. Rep. Steno Mem. Hosp.9, 1–110 (1960).

    Google Scholar 

  • Hutchison, V. H., Whitford, W. G., Kohl, M.: Relation of body size and surface area to gas exchange in anurans. Physiol. Zool.41 (1), 65–85 (1968).

    Google Scholar 

  • Irving, L., Scholander, P. F., Grinnell, S. W.: Experimental studies of the respiration of sloths. J. cell. comp. Physiol.20, 189–210 (1942).

    Google Scholar 

  • Jones, D. R.: Experiments on amphibian respiratory and circulatory systems. In: Experiments in physiology and biochemistry, vol. 3., ed. by G. A. Kerkut. London and New York: Academic Press 1970.

    Google Scholar 

  • Jones, D. R.: Oxygen consumption and heart rate of several species of anuran amphibia during submergence. Comp. Biochem. Physiol.20, 691–707 (1967).

    Google Scholar 

  • Jones, D. R., Shelton, G.: Factors influencing submergence and the heart rate in the frog. J. exp. Biol.41, 417–431 (1964).

    Google Scholar 

  • Krogh, A.: On the cutaneous and pulmonary respiration of the frog. Skand. Arch. Physiol.15, 328–419 (1904).

    Google Scholar 

  • Leggio, T., Morpurgo, G.: Dissociation curves of toad haemoglobin and a hypothesis for the cause of hibernation. Nature (Lond.)219 (5153), 493–494 (1968).

    Google Scholar 

  • Leivestad, H.: The effect of prolonged submersion on the metabolism and the heart rate in the toad. Arbok. Univ. Bergen,5, 1–15 (1960).

    Google Scholar 

  • Lenfant, C., Johansen, K.: Respiratory adaptations in selected amphibians. Resp. Physiol.2, 247–260 (1967).

    Google Scholar 

  • Mären, T. H.: Carbonic anhydrase: Chemistry, physiology, and inhibition. Physiol. Rev.47 (4), 595–781 (1967).

    Google Scholar 

  • McCutcheon, F. H.: Hemoglobin function during the life history of the bullfrog. J. cell. comp. Physiol.8, 63–81 (1936).

    Google Scholar 

  • Menon, K. R.: A comparative study of blood volume in some vertebrates. J. Univ. Bombay.20 (5), 47–51 (1952).

    Google Scholar 

  • Nicloux, M.: Considérations générals sur l'intoxication oxycarbonique et la quantité minima d'oxygène nécessaire dans le sang pour assurer la vie; leur intérêt thérapeutique. C. R. Soc. Biol. (Paris)89, 1311–1334 (1923).

    Google Scholar 

  • Peyrot, A., Pennisi, F., Biciotti, M.: Mesure du volume total et du pourcentage du sang chez le triton crete (Triturus cristatus carnifex (Laur). Dosage par dilution radio-isotopique. Z. vergl. Physiol.50, 88–90 (1965).

    Google Scholar 

  • Piiper, J.: Physiologial equilibria of gas cavities in the body. In: Handbook of physiology, sec. 3., Respiration, vol. II, p. 1205–1218, eds. W. O. Fenn and H. Rahn. Washington, D. C.: Amer. Physiol. Soc. 1965.

    Google Scholar 

  • Poczopko, P.: Cutaneous vasomotor response in the edible frog (Rana esculenta L.) to changes in carbon dioxide and oxygen concentration. Bull. Acad. pol. Sci. Cl. II, Ser. Sci. biol.4, 397–403 (1956).

    Google Scholar 

  • Poczopko, P.: Further investigations on the cutaneous vasomotor reflexes in the edible frog with connexion with the problem of regulation of cutaneous respiration in frogs. Zoologica Pol.8, 161–175 (1957).

    Google Scholar 

  • Poczopko, P.: On the seasonal variability of cutaneous vasomotor reflexes in the edible frog (Rana esculenta L.) Zoologica Pol.9, 115–129 (1958).

    Google Scholar 

  • Poczopko, P.: Respiratory exchange inRana esculenta L. in different respiratory media. Zoologiea Pol.10, 45–55 (1959).

    Google Scholar 

  • Prosser, C. L., Brown, F. A.: Comparative animal physiology, sec. ed. Philadelphia: W. B. Saunders Co. 1961.

    Google Scholar 

  • Prosser, C. L., Weinstein, S. J. F.: Comparison of blood volumes in animals with open and closed circulatory systems. Physiol. Zool.23, 113–124 (1950).

    Google Scholar 

  • Rahn, H.: Gasometric method for measurement of tissue oxygen tension. Fed. Proc.16, 685–688 (1957).

    Google Scholar 

  • Riggs, A. F.: The metamorphosis of hemoglobin in the bullfrog. J. gen. Physiol.35, 23–10 (1951).

    Google Scholar 

  • Robin, E. D., Vester, J. W., Murdaugh, M. V., Millen, J. E.: Prolonged anaerobiosis in a vertebrate: anaerobic metabolism in the freshwater turtle. J. cell. comp. Physiol.63 (3), 287–297 (1964).

    Google Scholar 

  • Rose, F. L., Drotman, R. B.: Anaerobiosis in a frog,Rana pipens. J. exp. Zool.166 (3), 427–432 (1967).

    Google Scholar 

  • Rubner, M.: Über den Einfluß der Körpergröße auf Stoff- und Kraftwechsel. Z. Biol.19, 535–562 (1883).

    Google Scholar 

  • Salthe, S. N.: Comparative catalytic studies of lactic dehydrogenases in the amphibia: environmental and physiological correlations. Comp. Biochem. Physiol.16, 393–408 (1965).

    Google Scholar 

  • Scholander, P. F.: Volumetric respirometer for aquatic animals. Rev. sci. Instr.20, 885–887 (1949).

    Google Scholar 

  • Scholander, P. F.: Experimental investigations on the respiratory function in diving mammals and birds. Hvalråd. Skr.22, 1–131 (1940).

    Google Scholar 

  • Severinghaus, J. W., Stupel, M., Bradley, A. F.: Accuracy of blood pH and pCO2 determinations. J. appl. Physiol.9, 189–196 (1956a).

    Google Scholar 

  • Severinghaus, J. W., Stupel, M., Bradley, A. F.: Variations of serum carbonic pK1 with pH and temperature. J. appl. Physiol.9, 197–200 (1956b).

    Google Scholar 

  • Shelton, G.: The effect of lung ventilation on blood flow to the lungs and body of the amphibian,Xenopus laevis. Resp. Physiol.9, 183–196 (1970).

    Google Scholar 

  • Simkiss, K.: Calcium and carbonate metabolism in the frog (Rana temporaria) during respiratory acidosis. Amer. J. Physiol.214 (3), 627–634 (1968).

    Google Scholar 

  • Strawinski, S.: Vascularization of respiratory surfaces in ontogeny of the edible frog.Rana esculenta L. Zoologica Pol.7, 327–365 (1956).

    Google Scholar 

  • Sulze, W.: Über die physiologische Bedeutung des Kalksäckchenapparates der Amphibien. Pflügers Arch. ges. Physiol.246, 250–257 (1942).

    Google Scholar 

  • Szarski, H.: The structure of respiratory organs in relation to body size in amphibia. Evolution, Lancaster, Pa.18 (1), 118–126 (1964).

    Google Scholar 

  • Theorell, H.: Kristallinisches Myoglobin. I. Mitteilung: Kristallisieren und Reinigung des Myoglobins sowie vorläufige Mitteilung über sein Molekulargewicht. Biochem. Z.252, 1–7 (1932).

    Google Scholar 

  • Van Liew, H. D.: Oxygen and carbon dioxide tensions in tissue and blood of normal and acidotic rats. J. appl. Physiol.25, 575–580 (1968).

    Google Scholar 

  • Whitford, W. G., Hutchison, V. H.: Body size and metabolic rate in salamanders. Physiol. Zool.40 (2) 127–133 (1967).

    Google Scholar 

  • Whitford, W. G., Hutchison, V. H.: Gas exchange in salamanders. Physiol. Zool.38 (3), 228–242 (1965).

    Google Scholar 

  • Wilson, B., Hansard, S. L., Cole, B. T.: Total blood volume of the turtle and the frog. Proc. La. Acad. Sci.23, 45–52 (1960).

    Google Scholar 

  • Wolvekamp, H. P.: Untersuchungen über den Sauerstofftransport durch Blutpigmente beiHelix, Rana undPlanorbis. Z. vergl. Physiol.16, 1–38 (1932).

    Google Scholar 

  • Wolvekamp, H. P., Lodewijks, J. M.: Über die Sauerstoffbindung durch Hämoglobin von Fröschen (Rana esculenta undRana temporaria). Z. vergl. Physiol.20, 382–387 (1934).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

I am grateful to Mr. B. Eddy for performing the measurements of blood gas contents and to Dr. R. L. Saunders for some technical assistance. Part of this work was supported by an operating grant from the National Research Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, D.R. Anaerobiosis and the oxygen debt in an anuran amphibian,Rana esculenta (L.). J. Comp. Physiol. 77, 356–382 (1972). https://doi.org/10.1007/BF00694941

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00694941

Keywords

Navigation