Skip to main content
Log in

Neural integration in the first optic neuropile of dragonflies

III. The transfer of angular information

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. 1.

    The transfer ofangular sensitivity from photoreceptors (retinula cells) to second order neurons (large monopolar cells — LMC's) is investigated by means of intracellular recordings from the retina and lamina ofHemicordulia tau. Angular sensitivity is measured by using a single point light source in two different ways. In the first, the constant intensity test flash method, responses to test flashes delivered at different angles of incidence are compared with the axial intensity/response function of the unit (Pig. 1). In the second, the off-axis intensity/ response function method, complete LMC intensity/response functions are derived at a number of angular inclinations toaxis (defined as the point of maximum sensitivity within the unit's visual field) (Fig. 4, 5).

  2. 2.

    The constant intensity test flash method shows that dragonfly retinula cells have a high angular sensitivity when compared to other insects. The horizontal and vertical acceptance angles are 1.46°±0.44 and 1.31°±0.23 respectively. Application of this same method to LMC's demonstrates that they retain retinal acuity for their angular sensitivity functionsappear to be the same as those of retinula cells (Pig. 2, Table 1).

  3. 3.

    The off-axis intensity/response functions show that the shape of the triphasic LMC response waveform depends upon the angular inclination of the stimulus to axis. The relative amplitudes of “on” transient and plateau (Pig. 3) vary independantly with angle (Pig. 4). The slope of the plateau response/log intensity curve decreases as the stimulus moves off axis but the “on” transient curve's slope remains relatively constant (Pig. 5).

  4. 4.

    Constant intensity test flash methods cannot measure LMC angular sensitivity because the slope of the response/log intensity curves depend upon stimulus inclination. The off-axis intensity/response function method shows that lateral inhibition narrows the LMC visual fields (Fig. 6) and angular sensitivity is increased during the transfer of visual information (Pig. 7).

  5. 5.

    Examination of the LMC response waveform (Fig. 8) and the intensity/response characteristics (Fig. 5) shows that two types of inhibition shape the response to square wave stimuli. Intracartridge inhibition acts at the level of the first synapses to attenuate the response to maintained stimuli. Intercartridge inhibition acts with a time delay to depolarise the LMC membrane and increase angular sensitivity.

  6. 6.

    It is concluded that LMC's integrate retinal input by acting as high sensitivity detectors of contrast differences within the spatial domain. Their role as an input to the visual system is discussed in relationship to visual behaviour and its experimental analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnett, D. W.: Spatial and temporal integration properties of units in the first optic ganglion of Dipterans. J. Neurophysiol.35, 429–444 (1972)

    Google Scholar 

  • Autrum, H., Zettler, F., Järvilehto, M.: Postsynaptic potentials from a single monopolar neuron of the ganglion opticum I of the blowflyCalliphora. Z. vergl. Physiol.70, 414–424 (1970)

    Google Scholar 

  • Boschek, C. B.: On the fine structure of the peripheral retina and lamina ganglionaris of the fly,Musca domestica. Z. Zellforsch.118, 369–409 (1971)

    Google Scholar 

  • Braitenberg, V. B.: Patterns of projection in the visual system of the fly. I. Retina- lamina projections. Exp. Brain Res.3, 271–298 (1967)

    Google Scholar 

  • Chappell, R. L., Dowling, J. E.: Neural organisation of the median ocellus of the dragonfly. I. Intracellular electrical activity. J. gen. Physiol.60, 121–147 (1972)

    Google Scholar 

  • Doving, K. B., Miller, W. H.: Function of insect compound eyes containing crystalline tracts. J. gen. Physiol.54, 250–267 (1969)

    Google Scholar 

  • Dowling, J. E., Chappell, R. L.: Neural organisation of the median ocellus of the dragonfly. II. Synaptic structure. J. gen. Physiol.60, 148–165 (1972)

    Google Scholar 

  • Eheim, W. P., Wehner, R.: Die Sehfelder der zentralen Ommatidien in den Appositionsaugen vonApis mellifica undCataglyphis bicolor (Apidae, Pormioidae; Hymenoptera). Kybernetik10, 168–179 (1972)

    Google Scholar 

  • Hartline, H. K.: Visual receptors and retinal interaction. Science164, 270–278 (1969)

    Google Scholar 

  • Hartline, H. K., Ratliff, F.: Inhibitory interaction in the retina ofLimulus. In: Handbook of sensory physiology, vol. VII/2, pp. 381–447. (M. G. F. Puortes, ed.). Berlin-Heidelberg-New York: Springer 1972

    Google Scholar 

  • Horridge, G. A.: Unit studies on the retina of dragonflies. Z. vergl. Physiol.62, 1–37 (1969)

    Google Scholar 

  • Horridge, G. A., Meinertzhagen, I. A.: The exact neural projection of the visual fields upon the first and second ganglia of the insect eye. Z. vergl. Physiol.66, 369–378 (1970)

    Google Scholar 

  • Järvilehto, M., Zettler, F.: Localised intracellular potentials from pre- and post- synaptic components in the external plexiform layer of an insect retina. Z. vergl. Physiol.75, 422–440 (1971)

    Google Scholar 

  • Järvilehto, M., Zettler, J.: Electrophysiological-histological studies on some functional properties of visual cells and second order neurons of an insect retina. Z. Zellforseh.136, 291–306 (1973)

    Google Scholar 

  • Kirschfeld, K.: Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge vonMusca. Exp. Brain Res.3, 248–270 (1967)

    Google Scholar 

  • Laughlin, S. A.: Neural integration in the first optic neuropile of dragonflies. I. Signal amplification in dark-adapted second order neurons. J. comp. Physiol.84, 335–355 (1973)

    Google Scholar 

  • Laughlin, S. B.: Neural integration in the first optic neuropile of dragonflies. II. Receptor signal interactions in the lamina. J. comp. Physiol.92, 357–375 (1974)

    Google Scholar 

  • Laughlin, S. B., Horridge, G. A.: Angular sensitivity of the retinula cells of dark- adapted worker bee. Z. vergl. Physiol.74, 329–335 (1971)

    Google Scholar 

  • Meyer, H.W.: Ethometrical investigations into spatial interaction within the visual system ofVelia caprai (Hemiptera, Heteroptera). In: Information processing in the visual systems of arthropods (R. Wehner, ed.), pp. 223–229. Berlin-Heidelberg-New York: Springer 1972

    Google Scholar 

  • Pritchard, G.: On the morphology of the compound eyes of dragonflies (Odonata: Anisoptera), with special reference to their role in prey capture. Proc. roy. ent. Soc. Lond. (A)41, 1–8 (1966)

    Google Scholar 

  • Ratliff, F.: Mach bands: quantitative studies on neural networks in the retina. San Francisco-London-Amsterdam: Holden-Day 1965

    Google Scholar 

  • Scholes, J.: The electrical responses of the retinal receptors and the lamina in the visual system of the flyMusca. Kybernetik6, 149–162 (1969)

    Google Scholar 

  • Shaw, S. R.: Organization of the locust retina. Symp. zool. Soc. Lond.23, 135–163 (1968)

    Google Scholar 

  • Snyder, A. W., Menzel, R., Laughlin, S. B.: The structure and function of the fused rhabdom. J. comp. Physiol.87, 99–135 (1973)

    Google Scholar 

  • Strausfeld, N. J.: The organization of the insect visual system (light microscopy). II. Projection of fibres across the first optic chiasma. Z. Zellforseh.121, 442–454 (1971b)

    Google Scholar 

  • Strausfeld, N. J., Campos-Ortega, J.A.: Some interrelationships between the first and second synaptic regions of the fly's (Musca, domestica L.) visual system. In: Information processing in the visual systems of arthropods. (R. Wehner, ed.), pp. 23–30. Berlin-Heidelberg-New York: Springer 1972

    Google Scholar 

  • Trujillo-Cenóz, O.: Some aspects of the structural organisation of the intermediate retina of Dipterans. J. Ultrastruct. Res.13, 1–33 (1965)

    Google Scholar 

  • Trujillo-Cenóz, O., Melamed, J.: Compound eye of Dipterans: anatomical basis for integration—an electron microscope study. J. Ultrastruct. Res.16, 395–398 (1966)

    Google Scholar 

  • Werblin, F. S.: Functional organization of a vertebrate retina: sharpening up in space and intensity. Ann. N. Y. Acad. Sci.193, 75–85 (1972)

    Google Scholar 

  • Werblin, P. S., Dowling, J. E.: Organization of the retina of the mudpuppyNecturus maculosus. II. Intracellular recording. J. Neurophysiol.32, 339–335 (1969)

    Google Scholar 

  • Wiedemann, I.: Versuche über den Strahlengang im Insektenauge (Appositionsauge). Z. vergl. Physiol.49, 526–542 (1965)

    Google Scholar 

  • Zettler, F., Järvilehto, M.: Lateral inhibition in an insect eye. Z. vergl. Physiol.76, 233–244 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

During the preparation of this and the previous paper many people gave freely of their time and expertise. My supervisors Professors G. A. Horridge and Randolf Menzel guided and encouraged me, Margaret Blakers expertly processed much of the raw experimental data and Mike Bate and Mark Leggett made sense of the original manuscripts. Finally I would like to thank Professor Kuno Kirschfeld for his constructive suggestions on the presentation and interpretation of these results.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laughlin, S.B. Neural integration in the first optic neuropile of dragonflies. J. Comp. Physiol. 92, 377–396 (1974). https://doi.org/10.1007/BF00694708

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00694708

Keywords

Navigation