Skip to main content
Log in

Über den Anaerobiosestoffwechsel von Molluskenmuskeln

The anaerobic pathway in molluscan muscles

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. 1.

    The activities of “key enzymes” representing the anaerobic pathway (GAPDH, LDH, ODH, PK, PEPCK, GPT, CS) in the adductor muscle of six species of mussels, the freshwater formsAnodonta cygnea, Dreissena polymorpha, andUnio spec. and the marine bivalvesCardium edule, Mya arenaria, andMytilus edulis, were assayed and compared with those in muscles from Crustacea and Amphibia (tail of the freshwater crayfishOrconectes limosus and gastrocnemius ofRana temporaria).

  2. 2.

    The glycolytic capacity (as indicated by the activity of GAPDH) of the adductor muscles is relatively low and the ability to produce lactate (as indicated by the activity of LDH) is very low. There are, however, high activities of enzymes essential for the production of succinate and octopine.

  3. 3.

    The glycogen stores of the adductor muscles from mussels were found to be significantly higher than in the muscles of Crustacea and Amphibia.

Zusammenfassung

  1. 1.

    Die Aktivitäten von „Schlüsselenzymen” des Anaerobiosestoffwechsels (GAPDH, LDH, ODH, PK, PEPCK, GPT, CS) wurden in den Schalenschließmuskeln von sechs verschiedenen Muschelarten, den SüßwasserformenAnodonta cygnea, Dreissena polymorpha undUnio spec. sowie den marinen BivalviernCardium edule, Mya arenaria undMytilus edulis, bestimmt und mit denen in glykolysierenden Muskeln der Crustaceen bzw. Amphibien verglichen (Schwanzmuskel vonOrconectes limosus bzw. Gastrocnemius vonRana temporaria).

  2. 2.

    Die Kapazität des Embden-Meyerhof-Weges (gemessen als Aktivität der GAPDH) der Muschelmuskeln ist verhältnismäßig gering, ihre Fähigkeit zur Lactatbildung (gemessen als Aktivität der LDH) minimal. Anstatt dessen konnten hohe Aktivitäten derjenigen Enzyme nachgewiesen werden, die für die Succinatgärung bzw. Octopingärung (?) essentiell sind.

  3. 3.

    Die Muschelmuskeln enthalten ein deutlich größeres Depot an Glykogen als die untersuchten Muskeln der Crustaceen und Amphibien.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Bergmeyer, H. U.: Methoden der enzymatischen Analyse, 2. Aufl. Weinheim: Verlag Chemie 1970

    Google Scholar 

  • Brand, T. von: Der Stoffwechsel vonAscaris lumbricoides bei Oxybiose und Anoxybiose. Z. vergl. Physiol.21, 220–235 (1934)

    Article  Google Scholar 

  • Bueding, E.: Studies on the metabolism of the filarial worm,Litomosoides carinii. J. exp. Med.89, 107–130 (1949)

    Article  CAS  Google Scholar 

  • Bueding, E., Farrow, G. W.: Identification of succinic acid as a constituent of the perienteric fluid ofAscaris lumbricoides. Exp. Parasit.5, 345–349 (1956)

    Article  PubMed  CAS  Google Scholar 

  • Bueding, E., Saz, H. J.: Pyruvate kinase and phosphoenolpyruvate carboxykinase activities ofAscaris muscle,Hymenolepis diminuta andSchistosoma mansoni. Comp. Biochem. Physiol.24, 511–518 (1968)

    Article  PubMed  CAS  Google Scholar 

  • Bueding, E., Yale, H.: Production of α-methylbutiric acid by bacteriafreeAscaris lumbricoides. J. biol. Chem.193, 411–423 (1951)

    PubMed  CAS  Google Scholar 

  • Bunge, G.: Weitere Untersuchungen über die Atmung der Würmer. Hoppe-Seylers Z. physiol. Chem.14, 318–324 (1889)

    Google Scholar 

  • Chen, C., Awapara, J.: Intracellular distribution of enzymes catalyzing succinate production from glucose inRangia mantle. Comp. Biochem. Physiol.30, 727–737 (1969a)

    Article  PubMed  CAS  Google Scholar 

  • Chen, C., Awapara, J.: Effect of oxygen on the end-products of glycolysis inRangia cuneata. Comp. Biochem. Physiol.31, 395–401 (1969b)

    Article  CAS  Google Scholar 

  • Fairbairn, D., Wertheim, G., Harpur, R. P., Schiller, E. L.: Biochemistry of normal and irradiated strains ofHymenolepis diminuta. Exp. Parasit.11, 248–263 (1961)

    Article  PubMed  CAS  Google Scholar 

  • Gäde, G.: Unveröffentlichte Ergebnisse

  • Hammen, C. S., Lum, S. C.: Fumarate reductase and succinate dehydrogenase activities in bivalve molluscs and brachiopods. Comp. Biochem. Physiol.19, 775–781 (1966)

    Article  CAS  Google Scholar 

  • Kmetec, E., Bueding, E.: Succinic and reduced diphosphopyridine nucleotide oxidase systems ofAscaris muscle. J. biol. Chem.236, 584–591 (1961)

    PubMed  CAS  Google Scholar 

  • Kmetec, E., Bueding, E.: Production of succinate by the canine whipwormTrichuris vulpis. Comp. Biochem. Physiol.15, 271–274 (1965)

    Article  PubMed  CAS  Google Scholar 

  • Malanga, C. J., Aiello, E. L.: Succinate metabolism in the gills of the musselsModiolus demissus andMytilus edulis. Comp. Biochem. Physiol.43 B, 795–806 (1972)

    Google Scholar 

  • Pette, D.: Plan und Muster im zellulären Stoffwechsel. Naturwissenschaften52, 597–616 (1965)

    Article  CAS  Google Scholar 

  • Pette, D.: Metabolic differentiation of distinct muscle types at the level of enzymatic organization. In: Pernow, B., Saltin, B., eds., Muscle metabolism during exercise. New York: Plenum Press 1971

    Google Scholar 

  • Prichard, R. K., Schofield, P. J.: The glycolytic pathway in adult liver fluke,Fasciola hepatica. Comp. Biochem. Physiol.24, 697–710 (1968a)

    Article  PubMed  CAS  Google Scholar 

  • Prichard, R. K., Schofield, P. J.: Phosphoenolpyruvate carboxykinase in the adult liver fluke,Fasciola hepatica. Comp. Biochem. Physiol.24, 773–785 (1968b)

    Article  PubMed  CAS  Google Scholar 

  • Regnouf, F., Thoai, N. van: Octopine and lactate dehydrogenases in mollusc muscles. Comp. Biochem. Physiol.32, 411–416 (1970)

    Article  PubMed  CAS  Google Scholar 

  • Robin, Y., Thoai, N. van: Métabolisme des dérivés guanidylés. — X. Métabolisme de l'octopine: son rôle biologique. Biochim. biophys. Acta (Amst.)35, 446–453 (1961)

    Google Scholar 

  • Saz, H. J., Lescure, O. L.: The functions of phosphoenolpyruvate carboxykinase and malic enzyme in the anaerobic formation of succinate byAscaris lumbricoides. Comp. Biochem. Physiol.30, 49–60 (1969)

    Article  PubMed  CAS  Google Scholar 

  • Saz, H. J., Vidrine, A.: The mechanism of formation of succinate and propionate byAscaris lumbricoides muscle. J. biol. Chem.234, 2001–2005 (1959)

    PubMed  CAS  Google Scholar 

  • Simpson, J. W., Awapara, J.: Phosphoenolpyruvate carboxykinase activity in invertebrates. Comp. Biochem. Physiol.12, 457–464 (1964)

    Article  PubMed  CAS  Google Scholar 

  • Simpson, J. W., Awapara, J.: The pathway of glucose degradation in some invertebrates. Comp. Biochem. Physiol.18, 531–548 (1966)

    Google Scholar 

  • Speck, U.: Das Kohlenhydratspektrum in den Organen des FlußkrebsesOrconectes limosus und seine Veränderungen im Jahresablauf. Z. vergl. Physiol.65, 51–69 (1969)

    Article  CAS  Google Scholar 

  • Stokes, T. M., Awapara, J.: Alanine and succinate as end-products of glucose degradation in the clamRangia cuneata. Comp. Biochem. Physiol.25, 883–892 (1968)

    Article  CAS  Google Scholar 

  • Thoai, N. van, Robin, Y.: Métabolisme des dérivés guanidylés. — VIII. Biosynthése de l'octopine et répartition de l'enzyme chez les invertébrés. Biochim. biophys. Acta (Amst.)35, 446–453 (1959)

    Article  Google Scholar 

  • Wegener, B. A., Barnitt, A. E., Hammen, C. S.: Reduction of fumarate and oxidation of succinate inCrassostrea virginica (Gmelin). Life Sci.8, 335–343 (1969)

    Article  PubMed  CAS  Google Scholar 

  • Weinland, E.: Über Kohlehydratzersetzung ohne Sauerstoffaufnahme beiAscaris, einen tierischen Gärungsprozeß. Z. Biol.42, 55–90 (1901)

    Google Scholar 

  • Weinland, E.: Über die vonAscaris lumbricoides ausgeschiedene Fettsäure. Z. Biol.45, 113–116 (1904)

    Google Scholar 

  • Zoeten, L. W. de, Tipker, J.: Intermediary metabolism of the liverflukeFasciola hepatica. — II. Hoppe-Seylers Z. physiol. Chem.350, 691–695 (1969)

    PubMed  Google Scholar 

  • Zwaan, A. de: Pyruvate kinase in muscle extracts of the sea musselMytilus edulis L. Comp. Biochem. Physiol.42B, 7–14 (1972)

    Google Scholar 

  • Zwaan, A. de, Marrewijk, J. A. van: Anaerobic glucose degradation in the sea musselMytilus edulis L. Comp. Biochem. Physiol.44B, 429–439 (1973)

    Google Scholar 

  • Zwaan, A. de, Zandee, D. J.: Body distribution and seasonal changes in the glykogen content of the common sea musselMytilus edulis L. Comp. Biochem. Physiol.43A, 53–58 (1972a)

    Google Scholar 

  • Zwaan, A. de, Zandee, D. J.: The utilization of glykogen and accumulation of some intermediates during anaerobiosis inMytilus edulis L. Comp. Biochem. Physiol.43B, 47–54 (1972b)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gäde, G., Zebe, E. Über den Anaerobiosestoffwechsel von Molluskenmuskeln. J. Comp. Physiol. 85, 291–301 (1973). https://doi.org/10.1007/BF00694235

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00694235

Navigation