Skip to main content
Log in

Entrainment of the circadian locomotor activity rhythm in crayfish

The role of the eyes and caudal photoreceptor

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. 1.

    Crayfish (Procambarus clarkii) on a light cycle (LD 12∶12) exhibit a bimodal locomotor activity rhythm. One activity maximum, the “lights-on” peak, is synchronized with the onset, while the other, the “lights-off” peak, occurs shortly after the offset of light (Figs. 1–5).

  2. 2.

    When placed in constant darkness (DD), these animals maintain a unimodal, free running circadian rhythm, involving only the “lights-off” peak of activity (Fig. 1).

  3. 3.

    Removal, or isolation from the CNS, of the sixth abdominal ganglion (the site of the caudal photoreceptor) has no observable effect on activity (Figs. 2, 3), indicating that the caudal photoreceptor is not necessary for entrainment or initiation of either activity maximum.

  4. 4.

    Removal of the ommatidia of both eyes, or bilateral section of the optic lobes between the lamina ganglionaris and medulla externa, obliterates the “lights-on” peak but does not affect entrainment of the “lights-off” response. Thus, the retina provides the necessary pathway for generating the “lights-on” activity, but is not required for entrainment of the circadian rhythm (Figs. 4, 5).

  5. 5.

    Finally, ablation of both the caudal ganglion and the retina does not abolish entrainment. It is assumed, therefore, that crayfish possess an extraretinal-extracaudal photoreceptor which provides a sufficient pathway for the entraining signal (Figs. 4, 5).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, K.: Extraoptic phase shifting of circadian locomotor rhythm in salamanders. Science164, 1290–1292 (1969a).

    Google Scholar 

  • Adler, K.: Pineal end organ: role in extraoptic entrainment of circadian locomotor rhythm in frogs. Symposium on Biochronometry, M. Menaker, ed. Washington, D. C.: National Academy of Sciences (in press) (1969b).

    Google Scholar 

  • Aiken, R. E.: Photoperiod, endocrinology and the crustacean molt cycle. Science164, 149–155 (1969).

    Google Scholar 

  • Aréchiga, H., Wiersma, C. A. G.: Circadian rhythm of responsiveness in crayfish visual units. J. Neurobiol.1, 71–85 (1969).

    Google Scholar 

  • Browman, L. G.: The effect of bilateral optic enucleation upon the activity rhythms of the albino rat. J. comp. Psychol.36, 33–46 (1943).

    Google Scholar 

  • Bruss, R. T., Jacobson, E., Halberg, F., Zander, H. A., Bittner, J. J.: Effects of lighting regimen and blinding upon gross motor activity of mice. Fed. Proc.17, 21 (1958).

    Google Scholar 

  • Chapple, W. D.: Light and the movement of crayfish. Masters Thesis, Syracuse University 1960.

  • Guyselman, J. B.: Solar and lunar rhythms of locomotor activity in the crayfishCambarus virilis. Physiol. Zool.30, 70–87 (1957).

    Google Scholar 

  • Hazlett, B. A.: Non-visual functions of crustacean eyestalk ganglia. Z. vergl. Physiol.71, 1–13 (1971).

    Google Scholar 

  • Hunt, J. M., Schlosberg, H.: The influence of illumination upon general activity in normal, blinded, and castrated male white rats. J. comp. Psychol.28, 285–298 (1939).

    Google Scholar 

  • Jegla, T. C., Poulson, T. L.: Evidence of circadian rhythms in a cave crayfish. J. exp. Zool.168, 273–282 (1968).

    Google Scholar 

  • Kalmus, H.: Das Aktogramm des Flußkrebes und seine Beeinflussung durch Organextrakte. Z. vergl. Physiol.25, 789–802 (1938a).

    Google Scholar 

  • Kalmus, H.: Über einen latenten physiologischen Farbwechsel beim FlußkrebsPotamobius astacus, sowie seine hormonale Beeinflussung. Z. vergl. Physiol.25, 784–797 (1938b).

    Google Scholar 

  • Kennedy, D.: Physiology of photoreceptor neurons in the abdominal nerve cord of the crayfish. J. gen. Physiol.46, 551–571 (1963).

    Google Scholar 

  • Kleinholz, L. H.: Crustacean eyestalk hormone and retinal pigment migration. Biol. Bull.70, 159–184 (1936).

    Google Scholar 

  • Kurup, N. G.: Crustacean hormones. J. Animal Morph. Physiol.10, 113–147 (1963).

    Google Scholar 

  • Lees, A. D.: The location of photoperiodic receptors in the aphidMegoura vicial Buckton. J. exp. Biol.41, 119–133 (1964).

    Google Scholar 

  • Maynard, D. M., Sallee, A.: Disturbance of feeding behavior in the spiny lobster,Panulirus argus, following bilateral ablation of the medulla terminalis. Z. vergl. Physiol.66, 123–140 (1970).

    Google Scholar 

  • Maynard, D. M., Yager, J. G.: Function of an eyestalk ganglion, the medulla terminalis, in olfactory integration in the lobster,Panulirus argus. Z. vergl. Physiol.59, 241–249 (1968).

    Google Scholar 

  • Maynard, D. M., Dingle, H.: An effect of eyestalk ablation on antennular function in the spiny lobster,Panulirus argus. Z. vergl. Physiol.46, 515–540 (1963).

    Google Scholar 

  • Menaker, M.: Extraretinal light perception in the sparrow I. Entrainment of the biological clock. Proc. nat. Acad. Sci. (Wash.)59, 414–421 (1968).

    Google Scholar 

  • Nishiitsutsuji-Uwo, J., Pittendrigh, C. S.: Central nervous system control of circadian rhythmicity in the cockroach. II. The pathway of light signals that entrain the rhythm. Z. vergl. Physiol.58, 1–13 (1968).

    Google Scholar 

  • Parker, G. H.: The eyes of blind crayfishes. Bull. Mus. Comp. Zool. Harv.20, 153–162 (1890).

    Google Scholar 

  • Pittendrigh, C. S.: Circadian rhythms and the circadian organization of living systems. Cold Spr. Harb. Symp. quant. Biol.25, 159–182 (1960).

    Google Scholar 

  • Prosser, C. L.: Action potentials in the nervous system of the crayfish. II. Responses to illumination of the eye and caudal ganglion. J. cell. comp. Physiol.4, 363–377 (1934).

    Google Scholar 

  • Richter, C. P.: Biological clocks in medicine and psychiatry. Springfield, Ill.: C. C. Thomas 1965.

    Google Scholar 

  • Richter, S. K.: Inherent twenty-four hour and lunar clocks of a primate-the squirrel monkey. Comm. Behav. Biol.1, 305–332 (1968).

    Google Scholar 

  • Roberts, S. K.: Photoreception and entrainment of cockroach activity rhythms. Science148, 958–959 (1965).

    Google Scholar 

  • Roberts, T. W.: Light, eyestalk chemical, and certain other factors as regulators of community activity for the crayfish,Cambarus virilis Hagen. Ecol. Monogr.14, 359–385 (1944).

    Google Scholar 

  • Schalleck, W.: Some mechanisms controlling locomotor activity in the crayfish. J. exp. Zool.91, 155–166 (1942).

    Google Scholar 

  • Stephens, C. G.: Induction of molting in the crayfish,Cambarus, by modification of daily photoperiod. Biol. Bull.108, 235–241 (1955).

    Google Scholar 

  • Truman, J. W.: Neuroendocrine control of ecdysis in silkmoths. Science167, 1624–1626 (1970).

    Google Scholar 

  • Underwood, H., Menaker, M.: Extraretinal light perception: Entrainment of the biological clock controlling lizard locomotor activity. Science170, 190–193 (1970).

    Google Scholar 

  • Welsh, J. H.: The caudal photoreceptor and responses of the crayfish to light. J. cell. comp. Physiol.4, 379–388 (1934).

    Google Scholar 

  • Welsh, J. H.: The sinus glands and 24-hour cycles of retinal pigment migration in the crayfish. J. exp. Zool.86, 35–49 (1941).

    Google Scholar 

  • Williams, C. M.: Photoperiodism and the endocrine aspects of diapause. Symp. Soc. exp. Biol.23, 285–300 (1969).

    Google Scholar 

  • Zimmerman, W. F., Goldsmith, T. H.: Photosensitivity of the circadian rhythm and of visual receptors in carotenoid-depeltedDrosophila. Science171, 1167–1169 (1971).

    Google Scholar 

  • Zwicky, K. T.: A light response in the tail ofUrodacus, a scorpion. Life Sci.7, 257–262 (1968).

    Google Scholar 

  • Zwicky, K. T.: Behavioral aspects of the extraocular light sense ofUrodacus, a scorpion. Experientia (Basel)26, 747–748 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by NIH Grant NS 05423 and by NIH Training Grant 5 T01 GM-00836.

The authors wish to acknowledge the technical assistance of Mr. Gregg Holmes. We also thank Dr. Michael Menaker for the use of equipment and for his comments and criticisms of an early version of the manuscript. Finally we acknowledge the interest of Dr. William D. Chapple throughout the course of this work and for his comments on the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Page, T.L., Larimer, J.L. Entrainment of the circadian locomotor activity rhythm in crayfish. J. Comp. Physiol. 78, 107–120 (1972). https://doi.org/10.1007/BF00693608

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00693608

Keywords

Navigation