Skip to main content
Log in

Flight of the honey bee

III. Flight metabolic power calculated from gas analysis, thermoregulation and fuel consumption

  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Summary

From measurements of gas exchange of single tethered bees flying in a closed-circuit miniature respiration wind tunnel atRQ=1.0, a relative metabolic power (relative metabolic rate) ofP mrel=0.515±0.1W g−1 was calculated based on a body mass of 80 mg for an ‘empty’ bee. This did not vary significantly over the temperature range 25.3°C≤T a≤34.0°C, but was significantly lower atT a=20°C. Over the range 22°C≤T a≤26°CP mrel was 0.379±0.07 W g−1.

Relative metabolic powerP m rel was calculated from round-about or wind tunnel post-flight thorax cooling rates (exponentially rising from 1 to 5.5°C min−1 per °C temperature difference at wind velocities from 0 to 4.3 m s−1) and from differences between thorax surface temperature and ambient temperature (exponentially decreasing from 6 to 1°C over the same range of wind velocities). A value ofP mrel=0.195±0.09W g−1 was found, independent of wind velocity.

From measurements of exhaustion flights of defined fed bees executing prolonged flights (30.6±4.7 min) in front of an open-jet wind tunnel, a relative metabolic power of 0.309±0.05 W g−1 was calculated, which did not vary significantly over the temperature range 25°C≤T a≤35°C, but was significantly lower atT a=20°C.

Our data from 3 experimentally different determinations ofP mrel are compared to data from a number of literature sources. A critical discussion suggests probable values of approximately 0.3 W g−1 for tethered flights (round-abouts, wind-tunnels), 0.4 W g−1 for medium speed free-foraging flights, and 0.5 W g−1 for hovering flight. Probable mechanical flight power for a muscle efficiency of 0.2 in medium speed free-foraging flight is approximately 70 mW g−1 body mass (equivalent to 5.6 mW for an ‘empty’ 80 mg bee) and 230 mW g−1 flight muscle mass. This is in the upper range of theoretical calculations, but not excessively high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bastian J, Esch H (1970) The nervous control of the indirect flight muscles of the honey bee. Z Vergl Physiol 67:307–324

    Google Scholar 

  • Berg S (1988) Größenabhängige Flugdauer beim Paarungsflug der Drohne (Apis mellifera). In: Nachtigall W (ed) BIONA report 7. Publ Acad Wiss Lt Mainz Fischer, Stuttgart, New York, pp 43–50

    Google Scholar 

  • Berger M (1974) Oxygen consumption and power of hovering hummingbirds at varying barometric and oxygen pressures. Naturewissenschaften 61:407

    Google Scholar 

  • Beutler R (1937) Über den Blutzucker der Bienen. Z Vergl Physiol 24:71–115

    Google Scholar 

  • Casey TM (1976) Flight energetics of sphinx moth: Power input during hovering flight. J Exp Biol 64:529–543

    Google Scholar 

  • Chappell M (1984) Thermoregulation of the green fig beetle (Cotinus texana) during flight and foraging behavior. Physiol Zool 57:581–539

    Google Scholar 

  • Church NS (1964) Heat loss and body temperature of flying insects. II. Heat conduction within the body and its loss by radiation and convection. J Exp Biol 37:186–212

    Google Scholar 

  • Cooper PD, Schaffer WM (1985) Temperature regulation of honey bees (Apis mellifica) foraging in the sonoran desert. J Exp Biol 114:1–15

    Google Scholar 

  • Crailsheim K (1988) Intestinal transport of glucose solution during honeybee flight. In: Nachtigall W (ed) BIONA report 7. Publ Acad Wiss Lit Mainz, Fischer, Stuttgart, New York, pp 119–128

    Google Scholar 

  • Ellington CP (1984) The aerodynamics of hovering insect flight. Phil Trans R Soc London B 306:1–181

    Google Scholar 

  • Ellington CP (1985) Power and efficiency of insect flight muscles. J Exp Biol 115:293–304

    Google Scholar 

  • Esch H (1976) Body temperature and flight performance of honey bees in a servomechanically controlled wind tunnel. J Comp Physiol 109:265–277

    Google Scholar 

  • Feller P (1985) Windkanalflug von Honigbienen (Apis mellifica carnica): Untersuchungen zu Treibstoffverbrauch, Flugphysiologie und Thermoregulation. Diplomarbeit, Universität Saarbrücken, unpublished

  • Feller P, Nachtigall W (1989) Flight of the honey bee. II. Innerand surface thorax temperatures and energetic criteria, correlated to flight parameters. J Comp Physiol B 158:719–727

    Google Scholar 

  • Heath JE, Josephson RK (1970) Body temperature and singing in the singing katydid,Neoconocephalus robustus (Orthoptera, Tettigoniidae). Biol Bull 138:272–285

    Google Scholar 

  • Heinrich B (1979) Keeping a cool head: honeybee thermoregulation. Science 205:1269–1271

    Google Scholar 

  • Heinrich B (1980) Mechanisms of body-temperature regulation in honeybees,Apis mellifera. II. Regulation of thoracic temperature at high air temperatures. J Exp Biol 85:73–87

    Google Scholar 

  • Hocking B (1953) The intrinsic range and speed of flight of insects. Trans R Entomol Soc Lond 104:223–345

    Google Scholar 

  • Jongbloed J, Wiersma CAG (1934) Der Stoffwechsel der Honigbiene während des Fliegens. Z Vergl Physiol 21:519–533

    Google Scholar 

  • Jungmann R (1984) Stoffwechselphysiologische Untersuchungen an in einem Miniaturwindkanal fliegenden Honigbienen (Apis mellifica). Diplomarbeit, Universität des Saarlandes, unpublished

  • Jungmann R, Rothe U, Feller P, Nachtigall W (1989) Flight of the honey bee. I. Thorax surface temperature and thermoregulation during flight. J Comp Physiol B 158:711–718

    Google Scholar 

  • Kosmin NP, Alpatow WW, Resnitschenko MS (1932) Zur Kenntnis des Gaswechsels und des Energieverbrauchs bei der Biene in Beziehung zu deren Aktivität. Z Vergl Physiol 17:408–422

    Google Scholar 

  • Levebre ZA, Hoover RE (1970) Solubilization, purification and some properties of trehalase from honeybee (Apis mellifera). Arch Biochem Biophys 140:514–518

    Google Scholar 

  • Lindauer M (1954) Temperaturregulation und Wasserhaushalt im Bienenstaat. Z Vergl Physiol 36:391–432

    Google Scholar 

  • Nachtigall W (1966) Die Kinematik der Schlagflügelbewegungen von Dipteren. Methodische und analytische Grundlagen zur Biophysik des Insektenflugs. Z Vergl Physiol 52:155–211

    Google Scholar 

  • Nicolson SW, Louw GN (1982) Simultaneous measurement of evaporative water loss, oxygen consumption, and thoracic temperature during flight in a carpenter bee. J Exp Zool 222:287–296

    Google Scholar 

  • Parhon M (1909) Les échanges nutritifs chez les abeilles pendant les quatres saisons. Ann Soc Nat Zool 9:1–50

    Google Scholar 

  • Rothe U (1983) Stoffwechselphysiologische Untersuchungen an ruhenden, laufenden und fliegenden Honigbienen (Apis mellifica carnica). Dissertation, Universität des Saarlandes, unpublished

  • Rothe U, Nachtigall W (1980) Zur Haltung vonApis mellifica in einem Flugraum. Apidologie 11:17–24

    Google Scholar 

  • Rothe U, Nachtigall W (1982) Erfahrungen mit einem Bienenflugraum. Spontane Königinnenaufzucht und Lebensdaueranalysen. Apidologie 13:241–246

    Google Scholar 

  • Rothe U, Nachtigall W (1989) Flight of the honey bee. IV. Respiratory quotients and metabolic rates during sitting, walking and flying. J Comp Physiol B 158:739–749

    Google Scholar 

  • Scholze E, Pichler H, Heran H (1964) Zur Entfernungsschätzung der Bienen nach dem Kraftaufwand. Naturwissenschaften 3:69–70

    Google Scholar 

  • Soltavalta O (1954) On the fuel consumption of the honey-bee (Apis mellifica L.) in flight experiments. Ann Zool “Vanamo” 16:1–27

    Google Scholar 

  • Tauchert F (1930) Weitere Stoffwechseluntersuchungen an Insekten. Z Biol 89:541–546

    Google Scholar 

  • Weis-Fogh T (1972) Energetics of hovering flight in hummingbirds and in Drosophila. J Exp Biol 56:79–104

    Google Scholar 

  • Weis-Fogh T, Alexander McN (1977) The sustanined power output obtainable from striated muscle. In: Pedley TJ (ed) Scale effects in animal locomotion. Academic Press, London New York, pp 511–526

    Google Scholar 

  • Wieser W (1986) Bioenergetik. Energietransformation beim Organismus. Thieme, Stuttgart New York

    Google Scholar 

  • Wille R (1963) Beiträge zur Phänomenologie der Freistrahlen. Z Flugwiss 11

  • Withers PC (1981) The effect of ambient air pressure on oxygen consumption of resting and hovering honeybees. J Comp Physiol 141:433–437

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nachtigall, W., Rothe, U., Feller, P. et al. Flight of the honey bee. J Comp Physiol B 158, 729–737 (1989). https://doi.org/10.1007/BF00693011

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00693011

Keywords

Navigation