Journal of Comparative Physiology B

, Volume 158, Issue 6, pp 637–641 | Cite as

Chronotropic and inotropic effects of atrial peptides on the isolated systemic heart ofOctopus vulgaris

  • Claudio Agnisola
  • Lucio Cariello
  • Amedeo De Santis
  • Antonio Miralto
  • Bruno Tota


The chronotropic and inotropic effects of four atrial peptides (cardiodilatin 1–16, atrial natriuretic factor 8–33 and atriopeptin I and III) on the isolated systemic heart ofOctopus vulgaris were studied.

Using a preparation that produces a physiological stroke volume at physiological input pressures, it was found that ANF, atriopeptin I and atriopeptin III exerted both negative chronotropic and inotropic effects. In contrast, cardiodilatin produced a positive inotropic effect.

A dose-response curve of ANF is reported, showing a threshold concentration of about 10−12M.

The pharmacological and physiological implications of these results are discussed in relation to some characteristics of the cephalopod systemic heart.


Peptide Human Physiology Stroke Volume Threshold Concentration Atrial Natriuretic Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen DE, Gellai M (1987) Cardioinhibitory effect of atrial peptide in conscious rats. Am J Physiol 252:R610-R616Google Scholar
  2. Brody S (1945) Bioenergetics and growth. With special reference to the efficiency complex in domestic animals. Reinhold Publ Corp, New York. Reprinted (1964): Hafner Publ Co, Darien, ConnGoogle Scholar
  3. Foti L, Trara Genoino I, Agnisola C (1985) In vitro cardiac performance inOctopus vulgaris (Lam). Comp Biochem Physiol 82C:483–488Google Scholar
  4. Houlihan DF, Innes AJ, Wells MJ, Wells J (1982) Oxygen consumption and blood gases ofOctopus vulgaris in hypoxic conditions. J Comp Physiol 148:35–40Google Scholar
  5. Houlihan DF, Duthie G, Smith PJ, Wells MJ, Wells J (1986) Ventilation and circulation during exercise inOctopus vulgaris. J Comp Physiol 156:683–689Google Scholar
  6. Houlihan DF, Agnisola C, Hamilton NM, Trara Genoino I (1987) Oxygen consumption of the isolated heart of octopus: effects of power output and hypoxia. J Exp Biol 131:137–157Google Scholar
  7. Kling G, Jakobs PM (1987) Cephalopod myocardial receptors: Pharmacological studies on the isolated heart ofSepia officinalis (L.). Experientia 43:511–525Google Scholar
  8. Nakayama K, Ohkudo H, Hirose T, Inacama S, Nakanishi S (1984) mRNA sequence for human cardiodilatin-atrial natriuretic factor precursor and regulation of precursor mRNA in rat atria. Nature 310:699–701Google Scholar
  9. Needleman P (1986) The expanding physiological roles of atrial natriuretic factor. Nature 321:199–200Google Scholar
  10. Palluk R, Gaida W, Hoefke W (1985) Atrial natriuretic facfor. Life Sci 36:1415–1425Google Scholar
  11. Poupa O, Lindstrom L (1983) Comparative and scaling aspects of heart and body weights with reference to blood supply of cardiac fibers. Comp Biochem Physiol 76A:413–421Google Scholar
  12. Reinecke M, Nehls N, Forssmann WG (1986) Phytogenetic aspects of cardiac hormones as revealed by immunocytochemistry, electron microscopy, and bioassay. Peptides 6:321–331Google Scholar
  13. Schipp R (1987) General morphological and functional characteristics of the cephalopod circulatory system. An introduction. Experientia 43:474–477Google Scholar
  14. Seymour AA, Sweet CS, Stabilito II, Emmert SE (1987) Cardiac and hemodypamic responses to synthetic atrial natriuretic factor in rats. Life Sci 40:511–519Google Scholar
  15. Smith PJS (1981) The role of venous pressure in the regulation of the output from the heart of the octopus,Eledone cirrhosa (Lam). J Exp Biol 93:243–255Google Scholar
  16. Thoren P, Mark AL, Morgan DA, O'Neill MTP, Needleman P, Brody MJ (1986) Activation of vagal depressor reflexes by atriopeptins inhibits renal sympathetic nerve activity. Am J Physiol 251:H1252-H1259Google Scholar
  17. Voigt KH, Martin R (1986) Neuropeptides with cardioexcitatory and opioid activity in octopus nerves. In: Stefano G (ed) Handbook of comparative opioid and related neuropeptide mechanisms, vol 1. CRC Press, Boca Raton, pp 127–138Google Scholar
  18. Voigt KH, Martin R (1987) The neurosecretory system of the octopus vena cava: a neurohemal organ. Experientia 43:537–543Google Scholar
  19. Voigt KH, Kiehling C, Frosch D, Schiebe M, Martin R (1981) Enkephalin-related peptides: direct action on the octopus heart. Neurosci Lett 27:25–30Google Scholar
  20. Wells MJ (1979) The heartbeat ofOctopus vulgaris. J Exp Biol 78:87–104Google Scholar
  21. Wells MJ, Smith PJS (1987) The performance of the octopus circulatory system: a triumph of engineering over design. Experientia 43:487–499Google Scholar
  22. Winquist RJ (1985) The relaxant effects of atrial natriuretic factor on vascular smooth muscle. Life Sci 37:1081–1087Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Claudio Agnisola
    • 1
  • Lucio Cariello
    • 2
  • Amedeo De Santis
    • 2
  • Antonio Miralto
    • 2
  • Bruno Tota
    • 3
  1. 1.Dipartimento di Fisiologia Generale ed AmbientaleUniversita' di NapoliNapoliItaly
  2. 2.Stazione Zoologica “A. Dohrn”NapoliItaly
  3. 3.Dipartimento di Biologia CellulareUniversita di CalabriaArcavacata di Rende (CS)Italy

Personalised recommendations