Skip to main content
Log in

The anaerobic oyster heart: Coupling of glucose and aspartate fermentation

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

The interrelationships of carbohydrate and amino acid metabolism during anaerobiosis were investigated in the ventricle of the intertidal oyster,Crassostrea gigas. While the ventricle accumulates alanine and succinate in a 2∶1 ratio during anoxia, these end products appear to arise from different precursors. Thus glucose-14C is metabolized mainly to alanine-14C (55% of glucose carbon appears in alanineversus 3% in succinate) by the anoxic ventriclein vitro while succinate-14C is the principle end product of aspartate-14C catabolism. Glutamate-14C is poorly metabolized by the anoxic ventricle, and correspondingly, while ventricular aspartate concentrations drop during anoxia, those of other amino acids do not. A metabolic scheme coupling glucose and aspartate catabolism in this facultative anaerobe is proposed. The detection of a third, as yet incompletely identified, anaerobic end product produced by the ventricle is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, M.: The anerobic tolerance of marine intertidal isopods. M.Sc. Thesis, Stanford University 1974

  • Bayne, B.L.: Ventilation, the heart beat, and oxygen uptake byMytilus edulis in declining oxygen tension. Comp. Biochem. Physiol.40, 1065–1085 (1971)

    Google Scholar 

  • Brand, A.R., Roberts, D.: The cardiac response of the scallop,Pecten maximus l. to respiratory stress. J. exp. mar. Biol. Ecol.13, 29–43 (1973)

    Google Scholar 

  • Campbell, J.W., Bishop, S.H.: Nitrogen metabolism in molluscs. In: Comparative biochemistry of nitrogen metabolism (ed. J.W. Campbell), pp. 103–206. New York: Academic Press 1970

    Google Scholar 

  • Chen, C., Awapara, J.: Intracellular distribution of enzymes catalyzing succinate production from glucose inRangia mantle. Comp. Biochem. Physiol.30, 727–737 (1969)

    Google Scholar 

  • Collicutt, J.M.: Anaerobic metabolism in the oyster heart. M.Sc. Thesis, University of British Columbia 1975

  • Crowley, G.J., Moses, V., Ullrich, J.: A versatile solvent to replace phenol in the paper chromatography of radioactive intermediary metabolites. J. Chromatog.12, 219–228 (1963)

    Google Scholar 

  • Drummond, G.I.: Muscle metabolism. Fortschr. Zool.18, 359–429 (1966)

    Google Scholar 

  • Dupaul, W.D., Webb, K.L.: Salinity-induced changes in the alanine and aspartic aminotransferase activity in three marine bivalve molluscs. Arch. int. Physiol. Biochem.82, 817–822 (1974)

    Google Scholar 

  • Fields, J.H.A.: Enzymes of the citrate baanchpoint in the adductor muscle of the oyster. Ph.D. Thesis, University of British Columbia 1976a

  • Fields, J.H.A.: A dehydrogenase requiring alanine and pyruvate as substrates from oyster adductor muscle. Fed. Proc.35, 1687 (1976b)

    Google Scholar 

  • Fields, J.H.A., Baldwin, J., Hochachka, P.W.: On the role of octopine dehydrogenase in cephalopod mantle muscle metabolism. Canad. J. Zool.54, 871–878 (1976)

    Google Scholar 

  • Gäde, G., Wilps, H.: Glycogen degradation and end products of anaerobic metabolism in the fresh water bivalveAnodonta cygnea. J. comp. Physiol.104, 79–85 (1975)

    Google Scholar 

  • Hammen, C.S.: Succinate and lactate oxidoreductases of bivalve molluses. Comp. Biochem. Physiol.50B, 407–412 (1975)

    Google Scholar 

  • Hochachka, P.W., Fields, J., Mustafa, T.: Animal life without oxygen: basic biochemical mechanisms. Amer. Zool.13, 543–555 (1973)

    Google Scholar 

  • Hochachka, P.W., Mustafa, T.: Invertebrate facultative anaerobiosis. Science178, 1056–1060 (1972)

    Google Scholar 

  • Irisawa, H., Irisawa, A., Shigeto, N.: Effects of Na+ and Ca2+ on the spontaneous excitation of the bivalve heart muscle. In: Comparative physiology of the heart: Current trends (ed. F.V. McCann), pp. 176–191. Basel: Birkhäuser 1969

    Google Scholar 

  • Kluytmans, J.H., Veenhof, P.R., Zwaan, A. de: Anaerobic production of volatile fatty acids in the sea mussel,Mytilus edulis L. J. comp. Physiol.104, 71–78 (1975)

    Google Scholar 

  • Lowry, O.H., Passonneau J.V.: A collection of metabolite assays. In: A flexible system of enzymic analysis, pp. 146–218. New York: Academic Press 1972

    Google Scholar 

  • Malanga, C.J., Aiello, E.L.: Succinate metabolism in the gills of the musselsModiolus demissus andMytilus edulis. Comp. Biochem. Physiol.43B, 795–806 (1972)

    Google Scholar 

  • Mustafa, T., Hochachka, P.W.: Catalytic and regulatory properties of pyruvate kinase of a marine bivalve. J. biol. Chem.246, 3196–3203 (1971)

    Google Scholar 

  • Mustafa, T., Hochachka, P.W.: Enzymes of facultative anaerobiosis in molluscs. III. Phosphoenolpyruvate carboxykinase and its role in aerobic-anaerobic transition. Comp. Biochem. Physiol.45B, 657–667 (1973)

    Google Scholar 

  • Regnouf, F., van Thoai, N.: Octopine and lactate dehydrogenases in molluse muscles. Comp. Biochem. Physiol.32, 411–416 (1970)

    Google Scholar 

  • Snedecor, G.W., Cochran, W.G.: Statistical methods, 6th ed. Ames, Iowa: Iowa State University Press 1967

    Google Scholar 

  • Stokes, T.M., Awapara, J.: Alanine and succinate as end products of glucose degradation in the clamRangia cuneata. Comp. Biochem. Physiol.25, 883–892 (1968)

    Google Scholar 

  • Thoai, N. van, Huc, C., Pho, D.B., Olomucki, A.: Octopine dehydrogenase: purification et proprietés catalytiques. Biochim. biophys. Acta (Amst.)52, 46–57 (1969)

    Google Scholar 

  • Williamson, J.R., Corkey, B.E.: Assays of intermediates of the citric acid cycle and related compounds by fluorometric enzyme methods. Meth. Enzymol.13, 434–513 (1969)

    Google Scholar 

  • Zwaan, A. de, Marrewijk, W. van: Anaerobic glucose degradation in the sea musselMytilus edulis L. Comp. Biochem. Physiol.44B, 429–439 (1973a)

    Google Scholar 

  • Zwaan, A. de, Marrewijk, W. van: Intracellular localization of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, and “malic enzyme” and the absence of glyoxylate cycle enzyme in the sea mussel,Mytilus edulis L. Comp. Biochem. Physiol.44B, 1057–1066 (1973b)

    Google Scholar 

  • Zwaan, A. de, Zandee, D.I.: The utilization of glycogen and accumulation of some intermediates during anaerobiosis inMytilus edulis L. Comp. Biochem. Physiol.43B, 47–54 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collicutt, J.M., Hochachka, P.W. The anaerobic oyster heart: Coupling of glucose and aspartate fermentation. J Comp Physiol B 115, 147–157 (1977). https://doi.org/10.1007/BF00692526

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00692526

Keywords

Navigation