Skip to main content
Log in

The role of the condensate in the existence of phonons and rotons

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Interpretations of the characteristic phonon-roton excitations in superfluid4He are discussed to assess the role of the condensate. In the celebrated Landau, Feynman, Feenberg and subsequent Correlated Basic Function methods, the phonon-roton excitations are interpreted as collective density excitations. This picture, suitably modified at higher Q to take account of the correlated motion of neighbors (backflow), provides our best description of neutron scattering data at low temperature. The condensate does not play an explicit role. In the Field Theory, second quantized formulation of Bogoliubov, Hugenholtz and Pines, Gavoret and Nozières and the subsequent Dielectric Function formulation, the condensate plays an explicit role. Because of the condensate, both regular density (particle-hole) and single particle excitations contribute to the density response. The regular density (two-particle) and single particle excitations mix as particles scatter into and out of the condensate. This Density-Quasiparticle picture provides a good description of the temperature dependence of neutron scattering data. From this description, the phonon at low Q is interpreted as a joint density/quasiparticle mode strongly coupled via the condensate. At higher Q, the sharp maxon-roton is interpreted as a quasiparticle excitation less strongly coupled into the density. The sharp maxon-roton peak is a unique feature of the condensate and could not be observed in S(Q, ω) without a condensate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.F. Talbot, H.R. Glyde, W.G. Stirling and E.C. Svensson, Phys. Rev.B38, 11229 (1988)

    Google Scholar 

  2. H.R. Glyde and W.G. Stirling, inPhonons 89 edited by S. Hunklinger, W. Ludwig and G. Weiss (World Scientific, Singapore, 1990)

    Google Scholar 

  3. W.G. Stirling and H.R. Glyde, Phys. Rev.B41, 4224 (1990)

    Google Scholar 

  4. H.R. Glyde and A. Griffin, Phys. Rev. Lett.65, 1454 (1990)

    Google Scholar 

  5. see A. Griffin, E.C. Svensson, W.G. Stirling, H.R. Glyde inExcitations in 2D and 3D Quantum Fluids, edited by A.F.G. Wyatt and H.J. Lauter (Plenum, NY 1990)

    Google Scholar 

  6. W.S. Wu, S.A. Vitiello, L. Reatto and M.H. Kalos, Phys. Rev. Lett.67, 1446 (1991)

    Google Scholar 

  7. G.W. Masserini, L. Reatto, and S.A. Vitiello, Phys. Rev. Lett.69, 2098 (1992)

    Google Scholar 

  8. Yu. A. Nepomnyashchy, Phys. Rev.B46, 6611 (1992)

    Google Scholar 

  9. S. Stringari, Phys. Rev.B46, 2974 (1992)

    Google Scholar 

  10. H.R. Glyde, Phys. Rev.B45, 7321 (1992)

    Google Scholar 

  11. B.E. Clements, E. Krotscheck and J.A. Smith (preprint) (1993)

  12. K.H. Andersen, Ph.D. Thesis (Keele U.) 1991 and unpublished

  13. K.H. Andersen and B. Fåk, Phys. Lett.A160, 468 (1991) and private comm.

    Google Scholar 

  14. K.H. Andersen, W.G. Stirling, R. Scherm, A. Stunault, B. Fåk, H. Godfrin, A.J. Dianoux, J. Phys. Cond. Matter (submitted)

  15. B. Fåk, L.P. Regnault and J. Bossy, J. Low Temp. Phys.89, 345 (1992)

    Google Scholar 

  16. N.M. Blagoveshchenskii et al., Pis'ma (JETP) Lett.57, 414 (1993)

    Google Scholar 

  17. A.D.B. Woods and E.C. Svensson, Phys. Rev. Lett.41, 974 (1978)

    Google Scholar 

  18. For references to earlier work, see H.R. Glyde and E.C. Svensson, inNeutron Scattering, edited by D.L. Price and K. Sköld, Methods of Exp. Phys., Vol. 23, Part B, (Academic Press, NY 1987), p. 303

    Google Scholar 

  19. L.D. Landau, J. Phys. U.S.S.R.5, 71 (1941); 11, 91 (1947)

    Google Scholar 

  20. R.P. Feynman, Phys. Rev.94, 262 (1954)

    Google Scholar 

  21. R.P. Feynman and M. Cohen, Phys. Rev.102, 1189 (1956)

    Google Scholar 

  22. E. Feenberg,Theory of Quantum Fluids (Academic Press, NY, 1969)

    Google Scholar 

  23. H.W. Jackson and E. Feenberg, Rev. Mod. Phys.34, 686 (1962)

    Google Scholar 

  24. H.W. Jackson, Phys. Rev.A4, 2386 (1971) andA8, 1529 (1973)

    Google Scholar 

  25. C.E. Campbell, inProgress in Liquid Physics (C.A. Croxton, ed.) p. 213. (Wiley, New York, 1978)

    Google Scholar 

  26. E. Manousakis and V.R. Pandharipande, Phys. Rev.B30, 5062 (1984)

    Google Scholar 

  27. E. Manousakis and V.R. Pandharipande, Phys. Rev.B33, 150 (1986)

    Google Scholar 

  28. C.E. Campbell, in Condensed Matter Theories, Vol. 8, edited by L. Blum and F.B. Malik (Plenum, NY, 1993)

    Google Scholar 

  29. N.N. Bogoliubov, J. Phys. U.S.S.R.11, 23 (1947)

    Google Scholar 

  30. S.T. Beliaev, Sov. Phys. JETP7, 289 (1958)

    Google Scholar 

  31. N. Hugenholtz and D. Pines, Phys. Rev.116, 489 (1959)

    Google Scholar 

  32. J. Gavoret and P. Nozières, Ann. Phys. NY28, 349 (1964)

    Google Scholar 

  33. A.A. Nepomnyashchy and Yu. A. Nepomnyashchy, Sov. Phys. JETP Lett.21, 1 (1975); Yu. A. Nepomnyashchy and A.A. Nepomnyashchy, Sov. Phys. JETP48, 493 (1978)

    Google Scholar 

  34. P.C. Hohenberg and P.C. Martin, Phys. Rev. Lett.12, 69 (1964)

    Google Scholar 

  35. S.-k. Ma and C.W. Woo, Phys. Rev.159, 165 (1967)

    Google Scholar 

  36. A. Griffin and T.H. Cheung, Phys. Rev.A7, 2086 (1973)

    Google Scholar 

  37. P. Szépfalusy and I. Kondor, Ann. Phys., NY82, 1 (1974)

    Google Scholar 

  38. P. Nozières and D. Pines,The Theory of Quantum Liquids, Vol. II (Addison-Wesley, NY, 1990)

    Google Scholar 

  39. D. Pines in Physics Today,42 (2), 61 (1989)

    Google Scholar 

  40. R.J. Donnelly, J.A. Donnelly, and R. N. Hills, J. Low Temp. Phys.44, 471 (1981)

    Google Scholar 

  41. A. Bijl, Physica7, 869 (1940)

    Google Scholar 

  42. D.K. Lee and F.J. Lee, Phys. Rev.B11, 4318 (1975)

    Google Scholar 

  43. V.F. Sears, E.C. Svensson, P. Martel, and A.D.B. Woods, Phys. Rev. Lett.49, 279 (1982)

    Google Scholar 

  44. E.C. Svensson and V.F. Sears, inFrontiers of Neutron Scattering (R.J. Birgeneau, D.E. Moncton, and A. Zeilinger, eds.) p. 126. North-Holland, Amsterdam, 1986. [Reprinted from Physica137B, 126 (1986).]

    Google Scholar 

  45. P.E. Sokol and W.M. Snow in Ref. 5

    Google Scholar 

  46. T.R. Sosnick, W.M. Snow, R.N. Silver and P.E. Sokol, Phys. Rev.B43, 216 (1991)

    Google Scholar 

  47. W.G. Stirling, inProceedings of the 2nd International Conference on Phonon Physics, edited by J. Kollar, N. Kroó, N. Menyhard, and T. Siklos (World Scientific, Singapore, 1985), p. 829.

    Google Scholar 

  48. D. Pines inQuantum Fluids, edited by D.F. Brewer (North Holland, Amsterdam, 1966), p. 257.

    Google Scholar 

  49. For a detailed derivation of (12), see H.R. Glyde, inCondensed Matter Theories, edited by L. Blum and F.B. Malik, (Plenum, New York, 1993) p. 159.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glyde, H.R. The role of the condensate in the existence of phonons and rotons. J Low Temp Phys 93, 861–878 (1993). https://doi.org/10.1007/BF00692035

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00692035

PACS numbers

Navigation