Skip to main content
Log in

Potential dependence of sodium fluxes across the gills of marine teleosts

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. 1.

    The flux ratio for movement of sodium ions across the gill epithelium of marine teleosts andArtemia salina departs markedly from that predicted for free diffusional fluxes by the Ussing flux ratio equation, yet variation of the sodium efflux with changes in the external solution is often close to that predicted for a free diffusional efflux through a membrane with a uniform potential gradient.

  2. 2.

    Description of the efflux by an equation appropriate for passive diffusion is inconsistent with the deduction that most if not all the branchial fluxes of sodium and chloride pass through the mechanisms of active transport.

  3. 3.

    An examination of active transport of ions treated as a reversible chemical reaction leads to a flux ratio equation which includes the energy used in causing active transport, and which is consistent with thermodynamic descriptions of active transport, providing isotope interactions are not significant.

  4. 4.

    This energy may be readily evaluated from the measured gill potential, flux ratio, and sodium concentrations in blood plasma and sea water.

  5. 5.

    By making a reasonable assumption, equations for the potential dependence of the unidirectional fluxes are derived.

  6. 6.

    The predicted potential dependence of the efflux is similar to that derived from the uniform potential gradient assumption for free diffusion, and as good a fit to the experimental data.

  7. 7.

    The validity of the assumptions made is discussed, with particular reference to imperfect coupling between ion transport and the driving reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arndt, R.A., Bond, J.D., Roper, D.L.: Electroneutral approximate solutions of steady state electrodiffusion equations for a simple membrane. J. theor. Biol.34, 265–276 (1972)

    Google Scholar 

  • Arndt, R.A., Bond, J.D., Roper, D.L.: An exact constant field solution for a simple membrane. Biophys. J.10, 1149–1153 (1970)

    Google Scholar 

  • Arndt, R.A., Roper, L.D.: Simple membrane electrodiffusion theory. Blacksburg, Virginia: Physical Biological Sciences Misc. 1972

    Google Scholar 

  • Christensen, H.N.: Towards a sharper definition of energetic coupling through integration of membrane transport into bioenergetics. J. theor. Biol.57, 419–431 (1976)

    Google Scholar 

  • Danisi, G., Vieira, F.L.: Nonequilibrium thermodynamic analysis of the coupling between active sodium transport and oxygen consumption. J. gen. Physiol.64, 372–391 (1974)

    Google Scholar 

  • Dean, R.B.: Theories of electrolyte equilibrium in muscle. Biol. Symp.3, 331–348 (1941)

    Google Scholar 

  • Essig, A.: The “Pump-Leak” model and exchange diffusion. Biophys. J.8, 53–63 (1968)

    Google Scholar 

  • Evans, D.H.: Sodium chloride and water balance of the intertidal teleostPholis gunnellus. J. exp. Biol.50, 179–190 (1969)

    Google Scholar 

  • Evans, D.H., Carrier, J.C., Bogan, M.B.: The effect of external potassium ions on the electrical potential measured across the gills of the teleostDormitator maculatus. J. exp. Biol.61, 277–283 (1974)

    Google Scholar 

  • Evans, D.H., Cooper, K.: The presence of Na+−Na+ and Na+−K+ exchange in sodium extrusion by three species of fish. Nature (Lond.)259, 241–242 (1976)

    Google Scholar 

  • Fletcher, C.R.: A phenomenological description of active transport. In: Perspectives in experimental biology, Vol. 1 (ed. P. Spencer-Davies). Oxford: Pergamon 1976

    Google Scholar 

  • Garrells, R.M.: Ion sensitive electrodes and individual ion activity coefficients. In: Glass electrodes for hydrogen and other cations. (ed. G. Eisenman). London: Arnold 1967

    Google Scholar 

  • Goldman, D.E.: Potential, impedance and rectification in membranes. J. gen. Physiol.27, 37–60 (1943)

    Google Scholar 

  • Greenwald, L., Kirschner, L.B., Sanders, M.: Sodium efflux and potential differences across the irrigated gill of sea water adapted rainbow trout (Salmo gairdneri). J. gen. Physiol.64, 135–147 (1974)

    Google Scholar 

  • Hoshiko, T., Lindley, B.D.: The relationship of Ussing's flux-ratio equation to the thermodynamic description of membrane permeability. Bioch. Biophys. Acta79, 301–317 (1964)

    Google Scholar 

  • House, C.R.: Osmotic regulation in the brackish water teleostBlennius pholis. J. exp. Biol.40, 87–104 (1963)

    Google Scholar 

  • House, C.R., Maetz, I.: On the electrical gradient across the gill of the sea water adapted eel. Comp. Bioch. Physiol.47A, 917–924 (1974)

    Google Scholar 

  • Kedem, O.: Criteria of active transport. In: Proc. symp. transport and metabolism (eds. A. Kleinzeller, A. Kotyk), p. 87. New York: Academic Press 1961

    Google Scholar 

  • Kedem, O., Caplan, S.R.: Degree of coupling and its relation to efficiency of energy conversion. Trans. Faraday Soc.61, 1897–1911 (1965)

    Google Scholar 

  • Kedem, O., Essig, A.: Isotope flows and flux ratios in biological membranes. J. gen. Physiol.48, 1047–1070 (1965)

    Google Scholar 

  • Kimizuka, H., Koketsu, K.: Ion transport through the cell membrane. J. theoret. Biol.6, 290–305 (1964)

    Google Scholar 

  • Kirschner, L.B., Greenwald, L., Sanders, M.: On the mechanism of sodium extrusion across the irrigated gill of sea water adapted rainbow trout (Salmo gairdneri). J. gen. Physiol.64, 148–165 (1974)

    Google Scholar 

  • Maetz, J., Bornancin, M.: Biochemical and biophysical aspects of salt excretion by chloride cells in teleosts. Fortschr. Zool.23, 322–362 (1975)

    Google Scholar 

  • Maetz, J., Pic, P.: New evidence for a Na/K and Na/Na exchange carrier linked with the Cl pump in the gill ofMugil capito in sea water. J. comp. Physiol.102, 85–100 (1975)

    Google Scholar 

  • Meares, P., Ussing, H.H.: The fluxes of sodium and chloride ions across a cation-exchange resin membrane. Trans. Faraday Soc.55, 142–155 (1959)

    Google Scholar 

  • Moore, E.W.: Hydrogen and cation analysis in biological fluids in vitro. In: Glass electrodes for hydrogen and other cations (ed. G. Eisenman). London: Arnold 1967

    Google Scholar 

  • Motais, R.: Les mécanismes d'échanges ioniques branchiaux chez les Téléostéens. Ann. Inst. oceanog. Monaco45, 1–84 (1967)

    Google Scholar 

  • Motais, R., Garca-Romeu, F., Maetz, J.: Exchange diffusion effect and euryhalinity in teleosts. J. gen. Physiol.50, 391–422 (1966)

    Google Scholar 

  • Parlin, R.B., Eyring, H.: Membrane permeability and electrical potential. In: Ion transport across membranes (ed. H.T. Clarke), pp. 103–118. New York: Academic Press 1954

    Google Scholar 

  • Pic, P., Mayer-Gostan, N., Maetz, J.: Branchial effects of epinephrine in the sea water adapted mullet. II. Na+ and Cl extrusion. Amer. J. Physiol.228, 441–447 (1975)

    Google Scholar 

  • Pickard, W.F.: A postulational approach to the problem of ion flux through membrane. Math. Biosci.4, 7–21 (1969)

    Google Scholar 

  • Potts, W.T.W., Eddy, F.B.: Gill potentials and sodium fluxes in the flounderPlatichthys flesus. J. comp. Physiol.87, 29–48 (1973)

    Google Scholar 

  • Potts, W.T.W., Fletcher, C.R., Eddy, B.: An analysis of the sodium and chloride fluxes in the flounderPlatichthys flesus. J. comp. Physiol.87, 21–28 (1973)

    Google Scholar 

  • Schwartz, T.L.: The thermodynamic foundations of membrane physiology. In: Biophysics and physiology of excitable membranes (ed. W.J. Adelman), pp. 47–95. New York: Van Nostrand Reinhold 1971a

    Google Scholar 

  • Schwartz, T.: The validity of the Ussing flux ratio equation in a three dimensionally inhomogeneous membrane. Biophys. J.11, 596–602 (1971b)

    Google Scholar 

  • Shaw, J.: Studies on the ionic regulation inCarcinus maenas L. I. Sodium balance. J. exp. Biol.38, 135–153 (1961)

    Google Scholar 

  • Shehadeh, Z.H., Gordon, M.S.: The role of the intestine in salinity adaptation of the rainbow troutSalmo gairdneri. Comp. Bioch. Physiol.30, 397–418 (1969)

    Google Scholar 

  • Smith, P.G.: The ionic relations of Artemia salina (L.). I. Measurements of electrical potential difference and resistance. J. exp. Biol.51, 727–738 (1969a)

    Google Scholar 

  • Smith, P.G.: The ionic relations ofArtemia salina (L.). II. Fluxes of sodium, chloride and water. J. exp. Biol.51, 739–757 (1969b)

    Google Scholar 

  • Teorell, T.: Membrane electrophoresis in relation to bioelectrical polarisation effects. Arch. sci. Physiol.3, 205–219 (1949)

    Google Scholar 

  • Ussing, H.H.: The alkali metal ions in biology. Berlin-Göttingen-Heidelberg: Springer 1960

    Google Scholar 

  • Ussing, H.H.: The distinction by means of tracers between active transport and diffusion. Acta physiol. Scand.19, 43–56 (1949)

    Google Scholar 

  • Vieira, F.L., Caplan, S.R., Essig, A.: Energetics of sodium transport in frog skin. II. The effects of electrical potential on oxygen consumption. J. gen. Physiol.59, 77–91 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fletcher, C.R. Potential dependence of sodium fluxes across the gills of marine teleosts. J Comp Physiol B 117, 277–289 (1977). https://doi.org/10.1007/BF00691554

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00691554

Keywords

Navigation