Skip to main content
Log in

Partial purification and properties of octopine dehydrogenase and the formation of octopine inAnodonta cygnea L.

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. 1.

    Octopine dehydrogenase was purified 120-fold from adductor muscle of the fresh water bivalveAnodonta cygnea L. by gel filtration on Sephadex G-100 and chromatography on DEAE-Sephadex A 50 and hydroxylapatite.

  2. 2.

    In comparison to the purified enzyme from marine species the final preparation of the octopine dehydrogenase fromAnodonta showed similarK m (1.0 mM for arginine, 0.4 mM for pyruvate, 1.2 mM for octopine) and pH values (6.3 and 10.1 respectively) and a similar molecular weight (40 000 Dalton).

  3. 3.

    During electrophoresis on standard polyacrylamide gels octopine dehydrogenase showed a multiple band pattern which is due to isoenzymes.

  4. 4.

    Alanine, lactate and succinate had no effect on the enzyme activity. Octopine, however, inhibited it strongly (Fig. 4)

  5. 5.

    Thede-novo synthesis of octopine in isolated adductor muscles from14C-pyruvate was not significantly different under aerobic or anaerobic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DTT:

dithiothreitol

EDTA:

ethylene diamine tetraacetic acid

NBT:

nitro blue tetrazolium

PMS:

phenazine methosulphate

TRA:

triethanolamine

References

  • Andrews, P.: The gel filtration behaviour of proteins related to their molecular weights over a wide range. Biochem. J.96, 595–606 (1965)

    Google Scholar 

  • Davis, G. J.: Disc electrophoresis. II. Method and application to human serum protein. Ann. N. Y. Acad. Sci.121, 403–427 (1964)

    Google Scholar 

  • Gäde, G.: Octopine dehydrogenase in the fresh water bivalve, Anodonta cygnea. Comp. Biochem. Physiol.48B, 513–517 (1974)

    Google Scholar 

  • Gäde, G., Wilps, H., Kluytmans, J. H. F. M., Zwaan, A., de: Glycogen Degradation and End Products of Anaerobic Metabolism in the Fresh Water BivalveAnodonta cygnea. J. comp. Physiol., in press (1975)

  • Gäde, G., Zebe, E.: Über den Anaerobiosestoffwechsel von Molluskenmuskeln. J. comp. Physiol.85, 291–301 (1973)

    Google Scholar 

  • Haas, S., Thomé-Beau, F., Olomucki, A., Thoai, N. van: Purification de l'octopine déshydrogénase de Sipunculus nudus. C. R. Acad. Sci. (Paris)276, 831–834 (1973)

    Google Scholar 

  • Johnson, R., Guderian, R. H., Eden, F., Chilton, M., Gordon, M. P., Nester, E. W.: Detection and quantitation of octopine in normal plant tissue and in crown gall tumors. Proc. nat. Acad. Sci. (Wash.)71, 536–539 (1974)

    Google Scholar 

  • Latner, A. L., Skillen, A. W.: Isoenzymes in biology and medicine. London and New York: Academic Press 1968

    Google Scholar 

  • Lowry, O., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. biol. Chem.193, 265–275 (1951)

    Google Scholar 

  • Menage, A., Morel, G.: Sur la présence d'octopine dans le tissus de crown gall. C. R. Acad. Sci. (Paris)259, 4795–4796 (1964)

    Google Scholar 

  • Moore, E., Wilson, D. W.: Nitrogenous extractives of scallop muscle. I. The isolation and study of the structure of octopine. J. biol. Chem.119, 573–584 (1937a)

    Google Scholar 

  • Moore, E., Wilson, D. W.: Nitrogenous extractives of scallop muscle. II. Isolation and quantitative analyses of muscle from freshly killed scallops. J. biol. Chem.119, 585–588 (1937b)

    Google Scholar 

  • Morizawa, K.: The extractive substances in Octopus octopodia. Acta Med. Univ. Kyoto9, 285–298 (1927)

    Google Scholar 

  • Regnouf, F., Thoai, N. van.: Octopine and lactate dehydrogenase in mollusc muscles. Comp. Biochem. Physiol.32, 411–416 (1970)

    Google Scholar 

  • Roche, J., Thoai, N. van, Robin, Y., Garcia, I., Hutt, J. L.: Sur la nature et la répartition des guanidines monosubstituées dans les tissues des invertébrés. Présence des dérivés métaboliques de l'arginine chez des mollusques, des crustacés et des echinodermes. C. R. Soc. Biol. (Paris)146, 1899–1902 (1952)

    Google Scholar 

  • Thoai, N. van, Huc, C., Pho, D. B., Olomucki, A.: Octopine déshydrogénase. Purification et propriétés catalytiques. Biochim. biophys. Acta (Amst.)191, 46–57 (1969)

    Google Scholar 

  • Thoai, N. van, Robin, Y.: Métabolisme des dérivés guanidylés. VIII. Biosynthése de l'octopine et repartition de l'enzyme chez les invertébrés. Biochim. biophys. Acta (Amst.)35, 446–453 (1959)

    Google Scholar 

  • Zwaan, A. de, Marrewijk, W. J. A. van: Anaerobic glucose degradation in the sea mussel Mytilus edulis. Comp. Biochem. Physiol.44B, 429–440 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gäde, G., Grieshaber, M. Partial purification and properties of octopine dehydrogenase and the formation of octopine inAnodonta cygnea L.. J Comp Physiol B 102, 149–158 (1975). https://doi.org/10.1007/BF00691300

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00691300

Keywords

Navigation