Skip to main content
Log in

Water and sodium balance in the estuarine diamondback terrapin (Malaclemys)

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

Total body water decreased significantly in terrapins exposed to sea water (SW). Although the intracellular fluid decreased somewhat upon SW exposure, the decline in extracellular fluid was almost twice as great. Under conditions of voluntary drinking after salt loading, terrapins substantially increased the volume of the extracellular fluid while maintaining the intracellular fluid near the freshwater (FW) control levels. FW terrapins were consistently heavier than animals of the same plastron length exposed to SW. Thus expression of body fluid volumes as ml/cm plastron length rather than as % body weight is necessary to correct for the loss of total body water with progressive dehydration. Fasted terrapins in SW lost weight at 0.32% weight/day, whereas the rate in FW was 0.21%/day. Water influx and efflux in SW were 0.17 and 0.16 ml/100 g·h respectively. When the efflux was increased by the calculated value for unmeasured respiratory loss, it exceeded the influex by 0.01 ml/100 g·h. Consequently the net water loss determined with radiotracers (equivalent to 0.24% weight/day) was similar to the difference between the weight losses in SW and FW (0.11%/day). Partitioning studies indicated that the majority of water exchange between the terrapin and SW occurs through the integument. Terrapins in SW underwent a concentration of the body fluids, most of which can be attributed to water loss, not electrolyte gain. The rates of Na influx and efflux were quite low (usually ranging from 6–10 μmoles/100 g·h). In two terrapins the injection of NaCl loads resulted in eight- to 19-fold increases in Na efflux. The uptake of Na from SW occurred orally. The skin was virtually impermeable to Na. The salt gland and possibly the cloaca were the major routes of Na efflux. The injection of NaCl loads resulted in an increase in cephalic Na excretion from a mean of 3.2 μmoles/100 g·h to 32.5 μmoles/100 g·h. Terrapins in SW exhibited a significant increase in bladder urine [K] over the FW controls. There was a direct relationship between plasma [Na], urine [K], and lachrymal salt gland Na−K ATPase content. In comparing SW terrapins with FW painted turtles (Chrysemys) exposed to SW radiotracer studies demonstrated a similarity in Na influx, but there was at least a four-fold increase in water exchange in the painted turtle. It seems likely that the skins of many aquatic reptiles (marine, estuarine and FW) are impermeable to Na but differ markedly in water permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Batschelet, E.: Introduction to mathematics for life scientists. p. 150–151. New York: Springer 1971

    Google Scholar 

  • Bentley, P.J., Bretz, W.L., Schmidt-Nielsen, K.: Osmoregulation in the diamondback terrapinMalaclemys terrapin centrata. J. exp. Biol.46, 161–167 (1967)

    Google Scholar 

  • Bentley, P.J., Schmidt-Nielsen, K.: Cutaneous water loss in reptiles. Science151, 1547–1549 (1966)

    Google Scholar 

  • Bentley, P.J., Schmidt-Nielsen, K.: Comparison of water exchange in two aquatic turtles (Trionyx spinifer andPseudemys scripta). Comp. Biochem. Physiol.32, 363–365 (1970)

    Google Scholar 

  • Brodsky, W.A., Schlib, T.P.: Osmotic properties of isolated turtle bladder. Amer. J. Physiol.208, 46–57 (1965)

    Google Scholar 

  • Brodsky, W.A., Schlib, T.P.: Ionic mechanisms for sodium and chloride transport across turtle bladders. Amer. J. Physiol.210, 987–996 (1966)

    Google Scholar 

  • Chien, S., Gregersen, M.I.: Determination of the body fluid volumes. In: Physical techniques in biological research, vol. 4, (Nastuk, W.L. ed.), p. 1–105. New York: Academic Press 1962

    Google Scholar 

  • Coker, R.E.: The diamondback terrapin in North Carolina. In: Survey of marine fisheries of North Carolina (H.F. Taylor, ed.), p. 219, 226, 230. State of North Carolina, North Carolina: 1951

  • Cowan, F.B.M.: Gross and microscopic anatomy of the orbital glands ofMalaclemys and other emydine turtles. Canad. J. Zool.47, 723–729 (1969)

    Google Scholar 

  • Cowan, F.B.M.: The ultrastructure of the lachrymal “salt” gland and the Harderian gland in the euryhalineMalaclemys and some closely related stenohaline emydines. Canad. J. Zool.49, 691–697 (1971)

    Google Scholar 

  • Cowan, F.B.M.: Observations of extrarenal excretion by orbital glands and osmoregulation inMalaclemys terrapin. Comp. Biochem. Physiol48A, 489–500 (1974)

    Google Scholar 

  • Dantzler, W.H., Schmidt-Nielsen, K.: Excretion in fresh-water turtle (Pseudemys scripta) and desert tortoise (Gopherus agassizii). Amer. J. Physiol.210, 198–210 (1966)

    Google Scholar 

  • Dawson, W.R., Shoemaker, V.H., Licht, P.: Evaporative water losses of some small Australian lizards. Ecology47, 589–594 (1966)

    Google Scholar 

  • Dunson, W.A.: Relationship between length and weight in the spiny soft-shell turtle. Copeia1967, 483–485 (1967a)

    Google Scholar 

  • Dunson, W.A.: Sodium fluxes in fresh-water turtles. J. exp. Zool.165, 171–182 (1967b)

    Google Scholar 

  • Dunson, W.A.: Reptilian salt glands. In: Exocrine glands (S.Y. Botelho, F.P. Brooks, W.B. Shelley, eds.), p. 83–103. Philadelphia: University of Pennsylvania Press 1969

    Google Scholar 

  • Dunson, W.A.: Some aspects of electrolyte and water balance in three estuarine reptiles, the diamondback terrapin, American and “salt water” crocodiles. Comp. Biochem. Physiol.32, 161–174 (1970)

    Google Scholar 

  • Dunson, W.A.: Salt glands in reptiles. In: Biology of the Reptilia. Physiol. A., vol. 5 (C. Gans, W.R. Dawson, eds.). New York: Academic Press 1976

    Google Scholar 

  • Dunson, W.A., Dunson, M.K.: Convergent evolution of sublingual salt glands in the marine file snake and the true sea snakes. J. comp. Physiol.86, 193–208 (1973)

    Google Scholar 

  • Dunson, M.K., Dunson, W.A.: The relation between plama Na concentration and salt gland Na−K ATPase content in the diamondback terrapin and the yellow-bellied sea snake. J. comp. Physiol.101, 89–97 (1975)

    Google Scholar 

  • Dunson, W.A., Robinson, G.D.: Sea snake skin: Permeable to water but not to sodium. J. comp. Physiol., in press (1976)

  • Evans, D.H.: The sodium balance of the euryhaline marine loggerhead turtle,Caretta caretta. J. comp. Physiol.83, 179–185 (1973)

    Google Scholar 

  • Gans, C., Krakauer, T., Paganelli, C.V.: Water loss in snakes: interspecific and intraspecific variability. Comp. Biochem. Physiol.27, 747–761 (1968)

    Google Scholar 

  • Gilles-Baillien, M.: Urea and osmoregulation in the diamondback terrapinMalaclemys centrata centrata (Latreille). J. exp. Biol.52, 691–697 (1970)

    Google Scholar 

  • Gilles-Baillien, M.: Isosmotic regulation in various tissues of the diamondback terrapinMalaclemys centrata centrata (Latreille). J. exp. Biol.59, 39–43 (1973a)

    Google Scholar 

  • Gilles-Baillien, M.: Hibernation and osmoregulation in the diamondback terrapinMalaclemys centrata centrata (Latreille). J. exp. Biol.59, 45–51 (1973b)

    Google Scholar 

  • Gordon, M.S., Schmidt-Nielsen, K., Kelly, H.M.: Osmotic regulation in the crab-eating frog (Rana cancrivora). J. exp. Biol.38, 659–678 (1961)

    Google Scholar 

  • Gregersen, M.I., Rawson, R.A.: The disappearance of T-1824 and structurally related dyes from the blood stream. Amer. J. Physiol.138, 698–707 (1943)

    Google Scholar 

  • Krakauer, T.: The ecological and physiological control of water loss in snakes. Ph. D. Thesis, University of Florida (1970)

  • Harrison, H.E.: A modification of the diphenylamine method for determination of inulin. Proc. Soc. exp. Biol. (N.Y.)49, 111–114 (1942)

    Google Scholar 

  • Holmes, W.N., McBean, R.L.: Some aspects of electrolyte excretion in the green turtle,Chelonia mydas mydas. J. exp. Biol.41, 81–90 (1964)

    Google Scholar 

  • Little, J.M.: A modified diphenylamine procedure for the determination of inulin. J. biol. Chem.180, 747–754 (1949)

    Google Scholar 

  • Norris, K.S., Dawson, W.R.: Observations on the water economy and electrolyte excretion of chuckwallas (Lacertilia. Sauromalus). Copeia1964, 638–646 (1964)

    Google Scholar 

  • Pettus, D.: Water relationships inNatrix sipedon. Copeia1958, 207–211 (1958)

    Google Scholar 

  • Potts, W.T.W., Evans, D.H.: Sodium and chloride balance in the killifishFundulus heteroclitus. Biol. Bull.133, 411–425 (1967)

    Google Scholar 

  • Renfro, J.L.: Water and ion transport by the urinary bladder of the teleostPseudopleuronectes americanus. Amer. J. Physiol.228, 52–61 (1975)

    Google Scholar 

  • Rudy, P.P., Wagner, R.C.: Water permeability in the pacific hagfish (Polistotrema stouti) and the staghorn sculpin (Leptocottus armatus). Comp. Biochem. Physiol.34, 399–403 (1970)

    Google Scholar 

  • Schlib, T.P., Brodsky, W.A.: Acidification of mucosal fluid by transport of bicarbonate ion in turtle bladders. Amer. J. Physiol.210, 997–1008 (1966)

    Google Scholar 

  • Schmidt-Nielsen, B.: Organ systems in adaptation: the excretory system. In: Handbook of physiology, sec. 4. (Dill, D.B., Adolph, E.F., Wilber, C.G., eds.), p. 215–243. Washington, D.C.: Am. Physiol. Soc. 1964

    Google Scholar 

  • Schmidt-Nielsen, B., Davis, L.E.: Fluid transport and tubular intercellular spaces in reptilian kidney. Science159, 1105–1108 (1968)

    Google Scholar 

  • Schmidt-Nielsen, K., Borut, A., Lee, P., Crawford, E., Jr.: Nasal salt excretion and the possible function of the cloaca in water conservation. Science142, 1300–1301 (1963)

    Google Scholar 

  • Schmidt-Nielsen, K., Fänge, R.: Salt glands in marine reptiles. Nature (Lond.)182, 783–785 (1958)

    Google Scholar 

  • Somogyi, M.: A method for the preparation of blood filtrates for the determination of sugar. J. biol. Chem.86, 655–663 (1930)

    Google Scholar 

  • Thorson, T.B.: Body fluid partitioning in reptilia. Copeia1968, 592–601 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, G.D., Dunson, W.A. Water and sodium balance in the estuarine diamondback terrapin (Malaclemys). J Comp Physiol B 105, 129–152 (1976). https://doi.org/10.1007/BF00691116

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00691116

Keywords

Navigation