Skip to main content
Log in

Intermediary metabolism of carbon compounds by nitrifying bacteria

  • Published:
Archiv für Mikrobiologie Aims and scope Submit manuscript

Summary

The assimilation of14CO2 and [2-14C] acetate, [3-14C] pyruvate, [5-14C] α-ketoglutarate, [2,3-14C] succinate, [U-14C] glutamate and [U-14C] aspartate was followed in cell suspensions ofNitrosomonas europaea andNitrobacter agilis respectively. There was appreciable incorporation of these substrates even without adding the inorganic nitrogen compounds that are oxidized by these bacteria yielding ATP. In the soluble amino acid fraction most of14C label was recovered in glutamate while in the protein amino acids a more uniform distribution was found. Acetate was rapidly incorporated to a high level in both nitrifying bacteria while inNitrobacter there was a relatively lower uptake of the other substrates especially succinate. High levels of the NAD malate dehydrogenase and NADP isocitrate dehydrogenase were measured but no significant amounts of the other tricarboxylic acid cycle enzymes or NADH oxidase were found. Glutamate decarboxylase was detected in both organisms and the transferase assay for glutamine synthetase indicated a 30-fold higher activity for this enzyme inNitrobacter. The amino acid composition of the water soluble fraction was determined in both bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aleem, M. I. H.: Path of carbon and assimilatory power in chemosynthetic bacteria. I.Nitrobacter agilis. Biochim. blophys. Acta (Amst.)107, 14–28 (1965).

    Google Scholar 

  • —: Mechanism of oxidative phosphorylation in the chemoautotrophNitrobacter agilis. Biochim. biophys. Acta (Amst.)162, 338–347 (1968).

    Google Scholar 

  • —, Alexander, M.: Cell-free nitrification byNitrobacter. J. Bact.76, 510–514 (1958).

    Google Scholar 

  • —, Lees, H., Nicholas, D. J. D.: Adenosine triphosphate-dependent reduction of nicotinamide adenine dinucleotide by ferro-cytochrome c in chemoautotrophic bacteria. Nature (Lond.)200, 759–761 (1963).

    Google Scholar 

  • Amarasingham, C. R., Davis, B. D.: Regulation of α-ketoglutarate dehydrogenase formation inEscherichia coli. J. biol. Chem.240, 3664–3668 (1965).

    Google Scholar 

  • Anderson, K. J., Lundgren, D. C.: Enzymatic studies of the iron oxidizing bacteriumFerrobacillus ferrooxidans: evidence for a glycolytic pathway and Krebs cycle. Canad. J. Microbiol.15, 73–79 (1969).

    Google Scholar 

  • Bernath, P., Singer, T. P.: Succinic dehydrogenase. In: Methods in Enzymology, Vol. 5, pp. 597–614. Ed. by S. P. Colowick and N. O. Kaplan. New York: Academic Press, Inc. 1962.

    Google Scholar 

  • Boulter, D., Barber, J. T.: Amino acid metabolism in germinating seeds ofVicia faba L. in relation to their biology. New Phytol.62, 301–316 (1963).

    Google Scholar 

  • Butler, R. G., Umbreit, W. W.: Reduced nicotinamide adenine dinucleotide oxidase and α-ketoglutaric dehydrogenase activity byThiobacillus thiooxidans. J. Bact.97, 966–967 (1969).

    Google Scholar 

  • Campbell, A. E., Hellebust, J. A., Watson, S. W.: Reductive pentose phosphate cycle inNitrosocystis oceanus. J. Bact.91, 1178–1185 (1966).

    Google Scholar 

  • Clark, C., Schmidt, E. L.: Effect of mixed culture onNitrosomonas europaea simulated by uptake and utilization of pyruvate. J. Bact.91, 367–373 (1966).

    Google Scholar 

  • ——: Growth response ofNitrosomonas europaea to amino acids. J. Bact.93, 1302 to 1308 (1967a).

    Google Scholar 

  • ——: Uptake and utilization of amino acids by resting cells ofNitrosomonas europaea. J. Bact.93, 1309–1315 (1967b).

    Google Scholar 

  • Delwiche, C. C., Finstein, M. S.: Carbon and energy sources for the nitrifying autotrophNitrobacter. J. Bact.90, 102–107 (1965).

    Google Scholar 

  • Dixon, G. H., Kornberg, H. L.: Assay methods for key enzymes of the glyoxylate cycle. Biochem. J.72, 3 P (1959).

  • Evans, M. C. W., Buchanan, B. B., Arnon, D. I.: A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc. nat. Acad. Sci. (Wash.)55, 928–934 (1966).

    Google Scholar 

  • Faull, K. F., Wallace, W., Nicholas, D. J. D.: Nitrite oxidase and nitrate reductase inNitrobacter agilis. Biochem. J.113, 449–455 (1969).

    Google Scholar 

  • Fonnum, F.: The distribution of glutamate decarboxylase and aspartate transaminase in sub-cellular fractions of rat and guinea pig brain. Biochem. J.106, 401–412 (1968).

    Google Scholar 

  • Grivell, A. R., Jackson, J. F.: Thymidine kinase: Evidence for its absence fromNeurospora crassa and some other micro-organisms, and the relevance of this to the specific labelling of deoxyribonucleic acid. J. gen. Microbiol.54, 307–317 (1968).

    Google Scholar 

  • Hager, L. P., Kornberg, H. L.: On the mechanism of α-oxoglutarate oxidation inEscherichia coli. Biochem. J.78, 194–198 (1961).

    Google Scholar 

  • Harris, G. K., Tigane, E., Hanes, G. S.: Quantitative chromatographic methods. 7. Isolation of amino acids from serum and other fluids. Canad. J. Biochem. Physiol.39, 439–451 (1961).

    Google Scholar 

  • Hoare, D. S., Hoare, S. L., Moore, R. B.: The photoassimilation of organic compounds by autotrophic blue-green algae. J. gen. Microbiol.49, 351–370 (1967).

    Google Scholar 

  • Hofman, T.: The biochemistry of the nitrifying organisms. 3. Composition ofNitrosomonas. Biochem. J.54, 293–295 (1953).

    Google Scholar 

  • Hooper, A. B.: Biochemical basis of obligate autotrophy inNitrosomonas europaea. J. Bact.97, 776–779 (1969).

    Google Scholar 

  • Ida, S., Alexander, M.: Permeability ofNitrobacter agilis to organic compounds. J. Bact.90, 151–156 (1965).

    Google Scholar 

  • Jennings, A. C., Morton, R. K.: Amino acids and protein synthesis in developing wheat endosperm. Aust. J. biol. Sci.16, 384–394 (1963).

    Google Scholar 

  • John, P. C. L., Syrett, P. J.: The purification and properties of isocitrate lyase fromChlorella. Biochem. J.105, 409–416 (1967).

    Google Scholar 

  • Johnson, E. J., Peck, H. D. Jr: Coupling of phosphorylation and carbon dioxide fixation in extracts ofThiobacillus thioparus. J. Bact.89, 1041–1050 (1965).

    Google Scholar 

  • Kaufman, S.: α-Ketoglutaric dehydrogenase system and phosphorylating enzyme from heart muscle. In: Methods in Enzymology, Vol.1, pp. 714–722. Ed. by S. P. Colowick and N. O. Kaplan. New York: Academic Press, Inc. 1955.

    Google Scholar 

  • Kelly, D. P.: The incorporation of acetate by the chemoautotrophThiobacillus neapolitanus, Strain C. Arch. Mikrobiol.58, 99–115 (1967).

    Google Scholar 

  • Leach, C. K., Carr, N. G.: Reduced nicotinamide-adenine dinucleotide phosphate oxidase in the autotrophic blue-green algaAnabaena variabilis. Biochem. J.109, 4P (1968).

    Google Scholar 

  • Lees, H.: Symposium on autotrophy. IV. Some thoughts on the energetics of chemosynthesis. Bact. Rev.26, 165–167 (1962).

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. biol. Chem.193, 265–275 (1951).

    Google Scholar 

  • Machlis, L., Torrey, J. G.: Plants in action, p. 44. San Francisco: W. H. Freeman and Company 1956.

    Google Scholar 

  • Mahler, H. R., Cordes, E. H., Biological chemistry. pp. 441–442. New York: Harper and Row Publ. Inc. 1966.

    Google Scholar 

  • Meister, A.: Biochemistry of amino acids. New York: Academic Press, Inc. 1965.

    Google Scholar 

  • Moon, K. E., Schofield, P. J.: Utilization of tricarboxylic acid cycle intermediates byHaemonchus contortus larvae. Comp. Biochem. Physiol.24, 581–590 (1968).

    Google Scholar 

  • Murray, R. G. E., Watson, S. W.: Structure ofNitrosocystis oceanus and comparison withNitrosomonas andNitrobacter. J. Bact.89, 1594–1609 (1965).

    Google Scholar 

  • Nicholas, D. J. D., Rao, P. S.: The incorporation of labelled CO2 into cells and extracts ofNitrosomonas europaea. Biochim. biophys. Acta (Amst.)82, 394–397 (1964).

    Google Scholar 

  • Oaks, A.: The soluble leucine pool in maize root tips. Plant Physiol.40, 142–149 (1965).

    Google Scholar 

  • Ochoa, S.: Isocitric dehydrogenase system (NADP+) from pig heart. In: Methods in Enzymology, Vol. 1, pp. 699–707. Ed. by S. P. Colowick and N. O. Kaplan. New York: Academic Press, Inc. 1955a).

    Google Scholar 

  • —: Malic dehydrogenase from pig heart. In: Methods in Enzymology, Vol. 1, pp. 735–739. Ed. by S. P. Colowick and N. O. Kaplan. New York: Academic Press, Inc. 1955b).

    Google Scholar 

  • Pate, J. S., Walker, J., Wallace, W.: Nitrogen containing compounds in the shoot system inPisum arvense L. II. The significance of the amino-acids and amides released from nodulated roots. Ann. Bot., (Lond.) N. S.29, 475–493 (1965).

    Google Scholar 

  • Polakis, E. S., Bartley, W.: Changes in the enzyme activities ofSaccharomyces cerevisiae during aerobic growth on different carbon sources. Biochem. J.97, 284–297 (1965).

    Google Scholar 

  • Racker, E.: Spectrophotometric measurements of the enzymatic formation of fumaric and cis-aconitic acids. Biochim. biophys. Acta (Amst.)4, 211–214 (1950).

    Google Scholar 

  • Rao, P. S., Nicholas, D. J. D.: Studies on the incorporation of CO2 by cells and cell-free extracts ofNitrosomonas europaea. Biochim. biophys. Acta (Amst.)124, 221–232 (1966).

    Google Scholar 

  • Roberts, R. B., Cowie, D. B., Abelson, P. H., Bolton, E. J., Britten, R. J.: Studies of biosynthesis inEscherichia coli. Carnegie Institution of Washington, Publication, No. 607 (1955).

  • Simmonds, D. H., Rowlands, R. J.: Automatic equipment for simultaneous determination of amino acids separated on several ion exchange resin columns. Analyt. Chem.32, 259–268 (1960).

    Google Scholar 

  • Smith, I.: Chromatographic and electrophoretic techniques. pp. 6–39. London: Heinemann 1960.

    Google Scholar 

  • Smith, A. J., Hoare, D. S.: Acetate assimilation byNitrobacter agilis in relation to its obligate autotrophy. J. Bact.95, 844–855 (1968).

    Google Scholar 

  • —, London, J., Stainer, R. Y.: Biochemical basis of obligate autotrophy in bluegreen algae andThiobacilli. J. Bact.94, 972–983 (1967).

    Google Scholar 

  • Tobback, P., Laudelout, H.: Poly-β-hydroxybutyric acid inNitrobacter. Biochim. biophys. Acta (Amst.)97, 589–590 (1965).

    Google Scholar 

  • Trudinger, P. A., Kelly, D. P.: Reduced nicotinamide adenine dinucleotide oxidation byThiobacillus neapolitanus andThiobacillus strain c. J. Bact.95, 1962 to 1963 (1968).

    Google Scholar 

  • Wallace, W., Nicholas, D. J. D.: Properties of some reductase enzymes in the nitrifying bacteria and their relationship to the oxidase systems. Biochem. J.109, 763–773 (1968).

    Google Scholar 

  • ——: Glutamate dehydrogenase inNitrosomonas europaea and the effect of hydroxylamine, oximes and related compounds on its activity. Biochim. biophys. Acta (Amst.)171, 229–237 (1969).

    Google Scholar 

  • Williams, J. LeB., Watson, S. W.: Autotrophy inNitrosocystis oceanus. J. Bact.96, 1640–1648 (1968).

    Google Scholar 

  • Woolfolk, C. A., Shapiro, B., Stadtman, E. R.: Regulation of glutamine synthetase. I. Purification and properties of glutamine synthetase fromEscherchia coli. Arch. Biochem116, 177–192 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wallace, W., Knowles, S.E. & Nicholas, D.J.D. Intermediary metabolism of carbon compounds by nitrifying bacteria. Archiv. Mikrobiol. 70, 26–42 (1970). https://doi.org/10.1007/BF00691058

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00691058

Keywords

Navigation