Skip to main content
Log in

Energetics for activity in the salamanderAmphiuma tridactylum

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

Various metabolic parameters were measured in relation to activity in the salamanderAmphiuma tridactylum. Cutaneous O2 consumption rate (\(\dot V_{O_2 }\)) did not change with activity (Fig. 1B). Pulmonary\(\dot V_{O_2 }\) did not increase during activity, but did increase after activity, repaying the O2 debt (Fig. 1). Changes in lactate, glycogen and glucose indicated that: 1) the energy for activity is primarily derived from oxidation of muscle glycogen to lactate; 2) gluconeogenesis reaches a peak at 5 h after activity; and 3) total replenishment of muscle lactate may not occur until after the animal feeds again (Figs. 2,3). The measured O2 debt of activity was 266.47 μl g−1 (Fig. 1B). The amount of excess lactate generated (1.52 mg g−1), estimates of O2 stores, and estimates of high energy phosphate stores were used to calculate an O2 debt (265.61 μl g−1) which agreed with the measured O2 debt (Fig. 4); 76% is a lactacid and 24% is an alactacid debt. The total energy cost of activity was calculated from similar estimates (Fig. 5). It is suggested thatAmphiuma can remain active longer than other amphibians which have similar anaerobic capacities because of the efficiency of swimming as a means of locomotion. The results are used in interpreting evolution of the lungs ofAmphiuma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, C.L.: The natural history and morphology ofAmphiuma. J. Tenn. Acad. Sci.20, 55–91 (1945)

    Google Scholar 

  • Bennett, A.F., Licht, P.: Anaerobic metabolism during activity in lizards. J. comp. Physiol.81, 277–288 (1972)

    Google Scholar 

  • Bennett, A.F., Licht, P.: Relative contributions of anaerobic and aerobic energy production during activity in amphibia. J. comp. Physiol.87, 351–360 (1973)

    Google Scholar 

  • Bennett, A.F., Licht, P.: Anaerobic metabolism during activity in amphibians. Comp. Biochem. Physiol.48A, 319–327 (1974)

    Google Scholar 

  • Bennett, A.F., Wake, M.H.: Metabolic correlates of activity in the caecilianGeotrypetes seraphini. Copeia (3), 764–769 (1974)

    Google Scholar 

  • Black, E.C., Robertson, A.C., Parker, R.R.: Some aspects of carbohydrate metabolism in fish. In: Comparative physiology of carbohydrate metabolism in heterothermic animals. Martin, A.W. (ed.), pp. 89–124. Seattle: University of Washington Press 1961

    Google Scholar 

  • Brett, J.R.: The metabolic demand for oxygen in fish, particularly salmonids, and a comparison with other vertebrates. Resp. Physiol.14, 151–170 (1972)

    Google Scholar 

  • Cagle, F.R.: Observations on a population of the salamander,Amphiuma tridactylum. Ecology29, 479–491 (1948)

    Google Scholar 

  • Carlson, F.D., Hardy, D., Wilkie, D.R.: The relation between heat produced and phosphorylcreatine split during isometric contraction of frog's muscle. J. Physiol.189, 209–235 (1967)

    Google Scholar 

  • Cerretelli, P., di Prampero, P.E., Ambrosoli, G.: High-energy phosphate resynthesis from anaerobic glycolysis in frog gastrocnemius muscle. Am. J. Physiol.222, 1021–1026 (1972)

    Google Scholar 

  • Cohen, J.J., Little, J.R.: Lactate metabolism in the isolated perfused rat kidney: relations to renal function and gluconeogenesis. J. Physiol.255, 399–414 (1976)

    Google Scholar 

  • Conant, R.: A field guide to reptiles and amphibians of eastern and central North America. Boston: Houghton Mifflin 1975

    Google Scholar 

  • Czopek, J.: Vascularization of respiratory surfaces in some Caudata. Copeia (4), 576–587 (1962a)

    Google Scholar 

  • Czopek, J.: Smooth muscles in the lungs of some Urodeles. Nature193, 798 (1962b)

    Google Scholar 

  • Darnell, R.M.: Environmental factors which determine the habitat ofAmphiuma. J. Tenn. Acad. Sci.23, 3–12 (1948)

    Google Scholar 

  • Feder, M.E.: Lunglessness body size, and metabolic rate in salamanders. Physiol. Zool.49, 398–406 (1976)

    Google Scholar 

  • Gratz, R.K., Hutchison, V.H.: Energetics for activity in the diamondback water snake,Natrix rhombifera. Physiol. Zool.50, 99–114 (1977)

    Google Scholar 

  • Guimond, R.W., Hutchison, V.H.: Pulmonary branchial and cutaneous gas exchange in the mud puppy,Necturus maculosus maculosus. Comp. Biochem. Physiol.42A, 367–392 (1972)

    Google Scholar 

  • Guimond, R.W., Hutchison, V.H.: Trimodal gas exchange in the large aquatic salamanderSiren lacertina. Comp. Biochem. Physiol.46A, 249–268 (1973)

    Google Scholar 

  • Guimond, R.W., Hutchison V.H.: Aerial and aquatic respiration in the congo eelAmphiuma means means. Resp. Physiol.20, 147–159 (1974)

    Google Scholar 

  • Hilman, S.S.: Cardiovascular correlates of maximal oxygen consumption in anuran amphibians. J. comp. Physiol.109, 199–204 (1976)

    Google Scholar 

  • Hutchison, V.H., Turney, L.D.: Glucose and lactate concentrations during activity in the leopard frog,Rana pipiens. J. comp. Physiol.99, 287–295 (1975)

    Google Scholar 

  • Hutchison, V.H., Turney, L.D., Gratz, R.K.: Aerobic and anaerobic metabolism during activity in the salamanderAmbystoma tigrinum. Physiol. Zool.50, 189–202 (1977)

    Google Scholar 

  • Johansen, K.: Cardiovascular dynamics in the amphibianAmphiuma tridactylum. Acta Med. Scand. Suppl.402, 1–82 (1963)

    Google Scholar 

  • Johansen, K., Lenfant, C., Hanson, D.: Cardiovascular dynamics in lungfishes. Z. vergl. Physiol.59, 157–186 (1968)

    Google Scholar 

  • Johansen, K., Hansen, D., Lenfant, C.: Respiration in a primitive air breather,Amia calva. Resp. Physiol.9, 162–174 (1970)

    Google Scholar 

  • Jones, D.R.: Anaerobiosis and the oxygen debt in an anuran amphibian,Rana esculenta. J. comp. Physiol.77, 356–382 (1972)

    Google Scholar 

  • Knuttgen, H.G.: Lactate and oxygen debt: an introduction. In: Muscle metabolism during exercise. Pernow, B., Saltin, B. (eds.), pp. 361–367. New York: Plenum Press, 1971

    Google Scholar 

  • Lenfant, C., Johansen, K.: Respiratory adaptations in selected amphibians. Resp. Physiol.2, 247–260 (1967)

    Google Scholar 

  • Lomholt, J.P., Johansen, K.: Gas exchange in the amphibious fish,Amphipnous cuchia. J. comp. Physiol.107, 141–157 (1976)

    Google Scholar 

  • McGilvery, R.W.: Biochemistry, a functional approach. Philadelphia: Saunders 1970

    Google Scholar 

  • Naimark, A., Wasserman, K., McIlroy, M.B.: Continuous measurement of ventilatory exchange ratio during exercise. J. Appl. Physiol.19, 644–652 (1964)

    Google Scholar 

  • Packard, G.C.: The evolution of air-breathing in paleozoic gnathostome fishes. Evolution28, 320–325 (1974)

    Google Scholar 

  • Penn, G.H.: Utilization of crawfishes by cold-blooded vertebrates in the eastern U.S.. Am. Midl. Nat.44, 643–658 (1950)

    Google Scholar 

  • Piiper, J., di Prampero, P.E., Cerretelli, P.: Oxygen debt and high-energy phosphates in gastrocnemius muscle of the dog. Am. J. Physiol.215, 523–531 (1968)

    Google Scholar 

  • Rahn, H., Rahn, K.B., Howell, B.J., Gans, C., Tenney, S.M.: Air breathing of the garfish (Lepisosteus osseus). Resp. Physiol.11, 285–307 (1971)

    Google Scholar 

  • Romer, A.S.: The vertebrate body. Philadelphia: Saunders 1970

    Google Scholar 

  • Schmidt-Nielsen, K.: Locomotion: energy cost of swimming, flying, and running. Science177, 222–228 (1972)

    Google Scholar 

  • Seymour, R.S.: Physiological correlates of forced activity and burrowing in the spadefoot toad,Scaphiopus hammondil. Copeia (1), 103–115 (1973)

    Google Scholar 

  • Shelton, G.: The effect of lung ventilation on blood flow to the lungs and body of the amphibianXenopus laevis. Resp. Physiol.9, 183–196 (1970)

    Google Scholar 

  • Sokal, R.R., Rohlf, F.J.: Biometry. San Francisco: Freeman 1969

    Google Scholar 

  • Szarski, H.: The structure of respiratory organs in relation to body size in amphibia. Evolution18, 118–126 (1964)

    Google Scholar 

  • Toews, D.P.: Factors affecting the onset and termination of respiration in the salamander,Amphiuma tridactylum. Can. J. Zool.49, 1231–1237 (1971)

    Google Scholar 

  • Toews, D.P., Shelton, G., Randall, D.J.: Gas tensions in the lungs and major blood vessels of the urodele amphibian,Amphiuma tridactylum. J. Exp. Biol.55, 47–61 (1971)

    Google Scholar 

  • Tucker, V.A.: Energetic cost of locomotion in animals. Comp. Biochem. Physiol.34, 841–846 (1970)

    Google Scholar 

  • Turney, L.D., Hutchison, V.H.: Metabolic scope, oxygen debt and the diurnal oxygen consumption cycle of the leopard frog,Rana pipiens. Comp. Biochem. Physiol.49A, 583–601 (1974)

    Google Scholar 

  • Ultsch, G.R.: Gas exchange and metabolism in the Sirenidae (Amphibia: Caudata) I. Oxygen consumption of submerged sirenids as a function of body size and respiratory surface area. Comp. Biochem. Physiol.47A, 485–489 (1974)

    Google Scholar 

  • Wasserman, K., Whipp, B.J., Koyal, S.N., Beaver, W.L.: Anaerobic threshol and respiratory gas exchange during exercise. J. Appl. Physiol.35, 236–243 (1973)

    Google Scholar 

  • Williamson, J.R., Jakob, A., Scholz, R.: Energy cost of gluconeogenesis in rat liver. Metabolism20, 13–26 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Preslar, A.J., Hutchison, V.H. Energetics for activity in the salamanderAmphiuma tridactylum . J Comp Physiol B 128, 139–146 (1978). https://doi.org/10.1007/BF00689477

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00689477

Keywords

Navigation