Skip to main content
Log in

Investigations on the role of the amino acids in anaerobic metabolism of the lugwormArenicola marina L.

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. 1)

    14C-Aspartate or15N-glutamate were injected into intact lugworms which subsequently were subjected to experimental anaerobiosis. The distribution of the label after different periods of anoxia was analyzed.

  2. 2)

    After two hours most of the radioactivity of14C-aspartate was recovered in malate and succinate.

  3. 3)

    An increase of alanine was observed during an early phase of anaerobiosis which is probably correlated to the decrease of aspartate. However,d-alanine was found to arise in quantities similar to those ofl-alanine. Therefore, metabolism of aspartate does not account for the total alanine accumulated. A correlation between the opposite changes of the two amino acids was demonstrated by the distribution of15N between alanine and applied glutamate. In addition, inhibition of glutamate pyruvate transaminase by aminooxyacetate resulted in a delay of aspartate utilization, i.e. glutamate oxalacetate transaminase was influenced indirectly.

  4. 4)

    Glycine which is present in very high concentrations in the body wall musculature ofArenicola, was not metabolized in significant quantities.

  5. 5)

    The lugworms took up alanine and glycine from the surrounding water until their concentrations fell to about 15 μmol/l. The uptake of the amino acids, however, occurred only in the presence of oxygen.

  6. 6)

    The possible role of aspartate in the anaerobic metabolism ofArenicola is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bergmeyer, H.U., Bernt, E.: Glutamat-Oxalacetat-Transaminase; UV-Test, manuelle Methode. In: Methoden der enzymatischen Analyse, Bd. 1. Bergmeyer, H.U. (ed.), pp. 769–775. Weinheim: Verlag Chemie 1974a

    Google Scholar 

  • Bergmeyer, H.U., Bernt, E.: Glutamat-Pyruvat-Transaminase; UV-Test, manuelle Methode. In: Methoden der enzymatischen Analyse, Bd. 1. Bergmeyer, H.U. (ed.), pp. 785–791 Weinheim: Verlag Chemie 1974b

    Google Scholar 

  • Bergmeyer, H.U., Bernt, E., Möllering, H., Pfleiderer, G.: L-Aspartat und L-Asparagin. In: Methoden der enzymatischen Analyse, Bd. 2. Bergmeyer, H.U. (ed.), pp. 1741–1745. Weinheim: Verlag Chemie 1974

    Google Scholar 

  • Block, R.J., Durrum, E.L., Zweig, G. Paper chromatography and paper electrophoresis. New York: Academic Press 1958

    Google Scholar 

  • Braunstein, A.E.: Amino group transfer. In: The enzymes, Vol. 9. Boyer, P.D. (ed.), pp. 379–481. New York: Academic Press 1973

    Google Scholar 

  • Collicut, J.M., Hochachka, P.W.: The anaerobic oyster heart; coupling of glucose and aspartate fermentation. J. Comp. Physiol.115, 147–157 (1977)

    Google Scholar 

  • Duchateau-Bosson, G., Jeuniaux, C., Florkin, M.: Rôle de la variation de la composante amino-acide intracellulaire dans l'euryhalinité d'Arenicola marina L., Arch. Int. Physiol. Biochim.69, 30–35 (1961)

    Google Scholar 

  • Fahmy, R.A., Niederwieser, A., Pataki, G., Brenner, M.: Dünnschichtchromatographie von Aminosäuren auf Kieselgel G. Eine Schnellmethode zur Trennung und zum qualitativen Nachweis von 22 Aminosäuren. Helv. Chim. Acta44, 2022–2027 (1961)

    Google Scholar 

  • Felbeck, H., Grieshaber, M.K.: Investigations on some enzymes involved in the anaerobic metabolism of amino acids ofArenicola marina. Comp. Biochem. Physiol. (in press)

  • Gäde, G., Wilps, H., Kluytmans, J.H.F.M., Zwaan, A. de: Glycogen degradation and end products of anaerobic metabolism in the fresh water bivalveAnodonta cygnea. J. Comp. Physiol.104, 79–85 (1975)

    Google Scholar 

  • Gehrke, C.W., Stalling, D.L.: Quantitative analysis of the twenty natural protein amino acids by gas liquid chromatography. Sep. Sci.2, 101–138 (1967)

    Google Scholar 

  • Grassl, M.: D-Alanin. In: Methoden der enzymatischen Analyse, Bd. 2. Bergmeyer, H.U. (ed.), pp. 1731–1734. Weinheim: Verlag Chemie 1974

    Google Scholar 

  • Gruner, B., Zebe, E.: Studies on the anaerobic metabolism of earthworms. Comp. Biochem. Physiol.60B, 441–445 (1978)

    Google Scholar 

  • Hochachka, P.,W., Fields, J., Mustafa, T.: Animal life without oxygen: Basic biochemical mechanisms. Am. Zool.13, 543–555 (1973)

    Google Scholar 

  • Hochachka, P.W., Mustafa, T.: Enzyme mechanisms and pathways in invertebrate facultative anaerobiosis. Science176, 1056–1060 (1972)

    Google Scholar 

  • Hopper, S., Segal, H.L.: Kinetic studies of rat liver glutamicalanine-transaminase. J. Biol. Chem.237, 3189–3195 (1962)

    Google Scholar 

  • Jørgensen, C.B.: August Pütter, August Krogh, and modern ideas on the use of dissolved organic matter in aquatic environments. Biol. Rev.51, 291–328 (1976)

    Google Scholar 

  • Kinne, O.: Salinity: Animals — Invertebrates. In: Marine ecology, Vol. I, Environmental factors, Part I. Kinne, O. (ed.), pp. 821–995. London: Wiley 1971

    Google Scholar 

  • Kluytmans, J.H., Veenhof, P.R., Zwaan, A. de: Anaerobic production of volatile fatty acids in the sea musselMytilus edulis (L.). J. Comp. Physiol.104, 71–78 (1975)

    Google Scholar 

  • Kopwillem, A., Lundin, H.: Analytical Isotachophoresis X: Amino acid analysis. LKB Application Note, Bromma, Sweden (1974)

  • Owen, T.G., Hochachka, P.W.: Purification and properties of dolphin muscle aspartate and alanine transaminase and their possible roles in the energy metabolism of diving mammals. Biochem. J.143, 541–553 (1974)

    Google Scholar 

  • Paskova, J., Munk, V.J.: A combined detecting reagent for the identification of organic acids on paper chromatograms. J. Chromatogr.4, 241–244 (1960)

    Google Scholar 

  • Sacktor, B.: Energetics and respiratory metabolism of muscular contraction. In: The physiology of insecta, Vol. II. Rockstein, M. (ed.), pp. 483–580. New York, London: Academic Press 1965

    Google Scholar 

  • Saz, H.J.: Facultative anaerobiosis in the invertebrates: Pathway and control systems. Am. Zool.11, 125–135 (1971)

    Google Scholar 

  • Schöttler, U., Schroff, G.: Untersuchungen zum anaeroben Glykogenabbau beiTubifex. J. Comp. Physiol.108, 243–254 (1976)

    Google Scholar 

  • Schöttler, U., Wienhausen, G.: The importance of the PEP-branchpoint in the anaerobic metabolism of marine polychaetes. In: Holwerda, D.A. (ed.) Proceedings of the International Symposium on the Physiology of Euryoxic Animals, Zeist. (in press)

  • Schroff, G., Schöttler, U.: Anaerobic reduction of fumarate in the body wall musculature ofArenicola marina (Polychaeta). J. Comp. Physiol.116, 325–336 (1977)

    Google Scholar 

  • Schroff, G., Wienhausen, G.: Formation of acetate and propionate by isolated mitochondria ofArenicola marina (Polychaeta). In: Holwerda, D.A. (ed.). Proceedings of the International Symposium on the Physiology of Euryoxic Animals, Zeist. (in press)

  • Smith, S.B., Briggs, S., Triebwasser, K.C., Freedland, R.A.: Reevaluation of amino-oxyacetate as an inhibitor. Biochem. J.162, 453–455 (1977)

    Google Scholar 

  • Stokes, T.M., Awapara, J.: Alanine and succinate as end products of glucose degradation in the clamRangia cuneata. Comp. Biochem. Physiol.25, 883–892 (1968)

    Google Scholar 

  • Surholt, B.: The influence of oxygen deficiency and electrical stimulation on the concentrations of ATP, ADP, AMP, and phosphotaurocyamine in the body-wall musculature ofArenicola marina. Hoppe-Seyler's Z. Physiol. Chem.358, 1455–1461 (1977)

    Google Scholar 

  • Trzaska, J., Kowkabany, G.N.: A paper chromatographic investigation of the homologous series of amino acids from glycine to α-amino-n-tetradecanoic acid. J. Chromatogr.26, 141–156 (1967)

    Google Scholar 

  • Udenfried, S., Stein, S., Böhlen, P., Dairman, W., Leimgruber, W., Weigele, M.: Fluorescamine: A reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range. Science178, 871–872 (1972)

    Google Scholar 

  • Williamson, D.H.: L-Alanin; Bestimmung mit Alanin Dehydrogenase. In: Methoden der enzymatischen Analyse, Bd. 2. Bergmeyer, H.U. (ed.), pp. 1724–1727. Weinheim: Verlag Chemie 1974

    Google Scholar 

  • Wilps, H., Zebe, E.: The end-products of anaerobic carbohydrate metabolism in the larvae ofChironomus thummi thummi. J. Comp. Physiol.112, 263–272 (1976)

    Google Scholar 

  • Zebe, E.: In-vivo Untersuchungen über den Glucose-Abbau beiArenicola marina (Annelida, Polychaeta). J. Comp. Physiol.101, 133–145 (1975)

    Google Scholar 

  • Zwaan, A. de: Anaerobic energy metabolism in bivalve molluscs. Oceanogr. Mar. Biol. Annu. Rev.15, 103–187 (1977)

    Google Scholar 

  • Zwaan, A. de, Kluytmans, J.H.F.M., Zandee, D.I.: Facultative anaerobiosis in molluscs. In: Biochemical Society Symposia, No. 41, Biochemical adaptation to environmental change. Smellie, R.M.S., Pennock, J.F. (eds.)pp. 133–168. London: Biochemical Society 1976

    Google Scholar 

  • Zwaan, A. de, Marrewijk, W.J.A. van: Anaerobic glucose degradation in the sea mussel,Mytilus edulis L.. Comp. Biochem. Physiol.44B, 429–439 (1973)

    Google Scholar 

  • Zwaan, A. de, Zandee, D.I.: The utilization of glycogen and accumulation of some intermediates during anaerobiosis inMytilus edulis (L.). Comp. Biochem. Physiol.43B, 47–54 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Felbeck, H. Investigations on the role of the amino acids in anaerobic metabolism of the lugwormArenicola marina L.. J Comp Physiol B 137, 183–192 (1980). https://doi.org/10.1007/BF00689219

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00689219

Keywords

Navigation