Skip to main content
Log in

The dentate gyrus in hypoglycemia: Pathology implicating excititoxin-mediated neuronal necrosis

  • Original Works
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Summary

A detailed light- and electron-microscopic study of the damage to the rat dentate gyrus in hypoglycemia was undertaken, in view of the previously advanced hypothesis that hypoglycemic nerve cell injury is mediated by a released neurotoxin. The distribution of neuronal necrosis showed a relationship to the subarachnoid cisterns.

Electron microscopy of the dentate granule cells and their apical dendrites revealed dendrosomal, axon-sparing neuronal pathology. Dentate granule cells were affected first in the dendrites in the outer layer of the stratum moleculare, sparing axons of passage and terminal boutons. Subsequently, the neuronal perikarya were affected, and Wallerian degeneration of axons followed. Cell membrane abnormalities preceded the appearance of mitochondrial flocculent densities and degradation of the cytoskeleton, and are suggested to be early lethal changes.

The observed early dendrotoxic changes, and the dendrosomal, axon-sparing nature of the lesion implicate an excitotoxin-mediated neuronal necrosis in hypoglycemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agardh C-D, Folbergrová J, Siesjö BK (1978) Cerebral metabolic changes in profound, insulin-induced hypoglycemia, and in the recovery period following glucose administration. J Neurochem 31:1135–1142

    Google Scholar 

  2. Amaral DG (1978) A Golgi study of cell types in the hilar region of the hippocampus in the rat. J Comp Neurol 182:851–914

    Google Scholar 

  3. Andersen P, Bliss TVP, Skede KK (1971) Lamellar organization of hippocampal excitatory pathways. Exp Brain Res 13:222–238

    Google Scholar 

  4. Auer RN, Olsson Y, Siesjö BK (1984) Hypoglycemic brain injury in the rat: Correlation of density of brain damage with the EEG isoelectric time. A quantitative study. Diabetes 33:1090–1098

    Google Scholar 

  5. Auer RN, Wieloch T, Olsson Y, Siesjö BK (1984) The distribution of hypoglycemic brain damage. Acta Neuropathol (Berl) 64:177–191

    Google Scholar 

  6. Auer RN, Kalimo H, Olsson Y, Siesjö BK (1985) The temporal evolution of hypoglycemic brain damage. I. Light and electron microscopic findings in the rat cerebral cortex. Acta Neuropathol (Berl) 67:13–24

    Google Scholar 

  7. Auer RN, Kalimo H, Olsson Y, Siesjö BK (1985) The temporal evolution of hypoglycemic brain damage. II. Light-and electron-microscopic findings in the hippocampal gyrus of the rat. Acta Neuropathol (Berl) 67:25–36

    Google Scholar 

  8. Blackstad TW, Brink K, Hem J, Jeune B (1970) Distribution of hippocampal mossy fibers in the rat. An experimental study with silver impregnation methods. J Comp Neurol 138:433–450

    Google Scholar 

  9. Brierley JB (1976) Cerebral hypoxia. In: Blackwood W, Corsellis JAN (eds) Greenfields neuropathology, 3rd ed, chapt 2 Arnold, London, pp 43–85

    Google Scholar 

  10. Coyle P (1978) Spatial features of the rat hippocampal vascular system. Exp Neurol 58:549–561

    Google Scholar 

  11. Erzurumlu RS, Rose G, Lynch GS, Killackey HP (1981) Selective uptake and anterograde transport of horseradish peroxidase by hippocampal granule cells. Neuroscience 6:897–902

    Google Scholar 

  12. Gaarskjaer FB (1978) Organization of the mossy fiber system of the rat studied in extended hippocampi. I. Terminal area related to number of granule and pyramidal cells. J Comp Neurol 178:49–72

    Google Scholar 

  13. Gaarskjaer FB (1978) Organization of the mossy fiber system of the rat studied in extended hippocampi. II. Experimental analysis of fiber distribution with silver impregnation methods. J Comp Neurol 178:73–88

    Google Scholar 

  14. Gaarskjaer FB (1981) The hippocampal mossy fiber system of the rat studied with retrograde tracing techniques. Correlation between topographic organization and neurogenetic gradients. J Comp Neurol 203:717–735

    Google Scholar 

  15. Garcia JH, Lossinsky AS, Kauffman FC, Conger KA (1978) Neuronal ischemic injury: light microscopy, ultrastructure, and biochemistry. Acta Neuropathol (Berl) 43:85–95

    Google Scholar 

  16. Herndon RM, Coyle JT, Addicks E (1980) Ultrastructural analysis of kainic acid lesion to cerebellar cortex. Neuroscience 5:1015–1026

    Google Scholar 

  17. Hjorth-Simonsen A, Jeune B (1972) Origin and termination of the hippocampal perforant path in the rat studied by silver impregnation. J Comp Neurol 144:215–232

    Google Scholar 

  18. Hjorth-Simonsen A (1972) Projection of the lateral part of the entorhinal area to the hippocampus and fascia dentata. J Comp Neurol 146:219–232

    Google Scholar 

  19. Honchar MP, Olney JW, Sherman WR (1983) Systemic cholinergic agents induce seizures and brain damage in lithium-treated rats. Science 220:323–325

    Google Scholar 

  20. Jennings RB, Shen AC, Hill ML, Ganote CE, Herdson PB (1978) Mitochondrial matrix densities in myocardial ischemia and autolysis. Exp Mol Pathol 29:55–65

    Google Scholar 

  21. Johansen FF, Jørgensen MB, von Lubitz DKJE, Diemer NH (1984) Selective dendrite damage in hippocampal CA1 stratum radiatum with unchanged axon ultrastructure and glutamate uptake after transient cerebral ischemia in the rat. Brain Res 291:373–377

    Google Scholar 

  22. Jones EL, Smith WT (1971) Hypoglycaemic brain damage in the neonatal rat. In: Brierley JB, Meldrum BS (eds) Brain hypoxia, chapt 23. Heinemann, London, pp 231–241

    Google Scholar 

  23. Kalimo H, Garcia JH, Kamijyo Y, Tanaka J, Trump BF (1977) The ultrastructure of brain death II. Electron microscopy of feline cortex after complete ischemia. Virchows Arch [Cell Pathol] 25:207–220

    Google Scholar 

  24. Kalimo H, Auer RN, Olsson Y, Siesjö BK (1985) The temporal evolution of hypoglycemic brain damage. III. Light- and electron-microscopic findings in the rat caudoputamen. Acta Neuropathol (Berl) 67:37–50

    Google Scholar 

  25. Kastein GW (1938) Insulinvergiftung. II. Neurologische und anatomisch-histologische Beschreibung. Z Ges Neurol Psychiatr 163:342–361

    Google Scholar 

  26. Lee JC, Olszewski J (1960) Penetration of radioactive bovine albumin from cerebrospinal fluid into brain tissue. Neurology 10:814–822

    Google Scholar 

  27. Monaghan DT, Holets VR, Toy DW, Cotman CW (1983) Anatomical distributions of four pharmacologically distinct3H-l-glutamate binding sites. Nature 306:176–179

    Google Scholar 

  28. Monaghan DT, Yao D, Olverman HJ, Watkins JC, Cotman CW (1985) Autoradiography of3H-d-2-amino-5-phosphonopentanoate binding sites in rat brain. Neurosci Lett (in press)

  29. Nadler JV, Evenson DA, Cuthbertson GJ (1981) Comparative toxicity of kainic acid and other acidic amino acids toward rat hippocampal neurons. Neuroscience 6:2505–2517

    Google Scholar 

  30. Olney JW, Fuller T, DeGubareff T (1979) Acute dendrotoxic changes in the hippocampus of kainate treated rats. Brain Res 176:91–100

    Google Scholar 

  31. Olney JW, Fuller TA, Collins RC, deGubareff T (1980) Systemic dipiperidinoethane mimics the convulsant and neurotoxic actions of kainic acid. Brain Res 200:231–235

    Google Scholar 

  32. Olney JW, Fuller TA, deGubareff T (1981) Kainate-like neurotoxicity of folates. Nature 292:165–167

    Google Scholar 

  33. Olney JW, deGubareff T, Labuyere (1983) Seizure-related brain damage induced by cholinergic agents. Nature 301:520–522

    Google Scholar 

  34. Petito CK, Pulsinelli WA (1984) Sequential development of reversible and irreversible neuronal damage following cerebral ischemia. J Neuropathol Exp Neurol 43:141–153

    Google Scholar 

  35. Rieke GK, Bowers DE (1981) Necrotizing effects of kainic acid on neurons in the pigeon brain: Histological observations. Brain Res 212:411–423

    Google Scholar 

  36. Roberts PJ, Foster GA (1983) Receptors for excitotoxins. In: Fuxe K, Roberts P, Schwarcz R (eds) Excitotoxins. Wenner-Gren International Symposium Series, vol 39. MacMillan, London, pp 66–81

    Google Scholar 

  37. Schwarcz R, Foster AC, French ED, Whetsell WO, Jr, Köhler C (1984) Excitotoxic models for neurodegenerative disorders. Life Sci 35:19–32

    Google Scholar 

  38. Schwarcz R, Whetsell WO, Jr, Mangano RM (1983) Quinolinic acid: An endogenous metabolite that produces axon-sparing lesions in the rat brain. Science 219:316–318

    Google Scholar 

  39. Schwarcz R, Whetsell WO Jr, Foster AC (1983) The neurodegenerative properties of intracerebral quinolinic acid and its structural analog cis-2,3-piperidine dicarboxylic acid. In: Fuxe K, Roberts P, Schwarcz R (eds) Excitotoxins. Wenner-Gren International Symposium Series, vol 39. MacMillan, London, pp 122–137

    Google Scholar 

  40. Schwob JE, Fuller T, Price JL, Olney JW (1980) Widespread patterns of neuronal damage following systemic or intracerebral injections of kainic acid: A histological study. Neuroscience 5:991–1014

    Google Scholar 

  41. Spielmeyer W (1925) Zur Pathogenese örtlich elektiver Gehirnveränderungen. Z Ges Neurol Psychiatr 99:756–776

    Google Scholar 

  42. Steward O, Scoville SA (1976) Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat. J Comp Neurol 169:347–370

    Google Scholar 

  43. Steward O (1976) Topographic organization of the projections from the entorhinal area to the hippocampal formation of the rat. J Comp Neurol 167:285–314

    Google Scholar 

  44. Trump BF, McDowell EM, Arstila AU (1980) Cellular reaction to injury. In: Hill RB, LaVia MF (eds) Principles of pathobiology, 3rd ed, chapt 2. Oxford University Press, New York Oxford, pp 20–111

    Google Scholar 

  45. Vogt C, Vogt O (1937) Sitz und Wesen der Krankheiten im Lichte der topistischen Hirnforschung und des Varierens der Tiere. J Psychol Neurol 47:237–457

    Google Scholar 

  46. Walaas I (1983) The hippocampus. In: Emson PC (ed) Chemical neuroanatomy. Raven Press, New York, pp 337–358

    Google Scholar 

  47. Weil A, Liebert E, Heilbrunn G (1938) Histopathologic changes in the brain in experimental hyperinsulinism. Arch Neurol Psychiatry 39:467–481

    Google Scholar 

  48. Wieloch T (1985) Neurochemical correlates to regional selective neuronal vulnerability. Prog Brain Res (in press)

  49. Wuerthele SM, Lovell KL, Jones MZ, Moore KE (1978) A histological study of kainic acid-induced lesions in the rat brain. Brain Res 149:489–497

    Google Scholar 

  50. Wyss JM (1981) An autoradiographic study of the efferent connections of the entorhinal cortex in the rat. J Comp Neurol 199:495–512

    Google Scholar 

  51. Zelman IB, Wierzba-Bobrowicz T (1980) Structural picture of brain damage in the rat in relation to insulin-induced hypoglycemia. Neuropatol Pol 18:301–311

    Google Scholar 

  52. Zimmer J (1971) Ipsilateral afferents to the commissural zone of the fascia dentata, demonstrated in decommissurated rats by silver impregnation. J Comp Neurol 142:393–416

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Swedish Medical Research Council (projects 12X-03020, 12X-07123, 14X-263), the Finnish Medical Research Council, and the National Institutes of Health of the United State Public Health Service (grant no. 5 RO1 NS07838)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auer, R., Kalimo, H., Olsson, Y. et al. The dentate gyrus in hypoglycemia: Pathology implicating excititoxin-mediated neuronal necrosis. Acta Neuropathol 67, 279–288 (1985). https://doi.org/10.1007/BF00687813

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00687813

Key words

Navigation