Skip to main content
Log in

Tracer study on a paracellular route in experimental hydrocephalus

  • Original Works
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Summary

Considering the possibility of a paracellular pathway for edema resoltuion, we studied the intracerebral movement of proteins and ionic lanthanum in rats with experimental hydrocephalus. Hydrocephalus was induced by injection of kaolin suspension into the cisterna magna. After induction of hydrocephalus, horseradish peroxidase (HRP), microperoxidase (MP), or lanthanum chloride (LaCl3) were perfused into the ventricle system. HRP and MP were localized mainly in the intercellular spaces between ependymal cells, glial cells, and in perivascular spaces and were restricted by endothelial tight junctions. Ionic lanthanum (La3+), however, penetrated these tight junctions and moved between the blood and CSF cavities by paracellular pathways. These findings indicate that in obstructive hydrocephalus, the tight junctions may constitute part of a paracellular pathway for the transendothelial movement of small solutes, although they prevent the movement of larger molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bering EA, Sato O (1963) Hydrocephalus: Changes in formation and absorption of cerebral fluid within the cerebral ventricles. J Neurosurg 20:1050–1063

    Google Scholar 

  • Bouldin TW, Krigman MR (1975) Differential permeability of cerebral capillary and choroid plexus to lanthanum ion. Brain Res 99:444–448

    Google Scholar 

  • Brightman MW (1965a) The distribution within the brain of ferritin injected into cerebrospinal fluid compartments. I. Ependymal distribution. J Cell Biol 26:99–122

    Google Scholar 

  • Brightman MW (1965b) The distribution within the brain of ferritin injected into cerebrospinal fluid compartment. II. Parenchymal distribution. Am J Anat 117:193–220

    Google Scholar 

  • Brightman MW, Rees TS (1969) Junctions between intimately appose cell membranes in the vertebrate brain. J Cell Biol 40:648–677

    Google Scholar 

  • Brightman MW, Hori M, Rapoport ST, Rees TS (1973) Osmotic opening of tight junctions in cerebral endothelium. J Comp Neurol 152:317–326

    Google Scholar 

  • Bundgaard M (1982) Ultrastructure of frog cerebral and pial microvessels and their impermeability to lanthanum ions. Brain Res 241:57–65

    Google Scholar 

  • Bundgaard M, Cserr HF (1981) Impermeability of hangfish cerebral capillaries to radiolabelled polyethylene glycols to microperoxidase. Brain Res 206:71–81

    Google Scholar 

  • Cervós-Navarro J, Artigas J, Mrsuja BJ (1983a) Morphofunctional aspects of the normal and pathological blood-brain barrier. Acta Neuropathol [Suppl] (Berl) 8:1–19

    Google Scholar 

  • Cervós-Navarro J, Artigas J, Nakagawa Y, Sasaki S (1983b) Morphological evidence of transjuctional fluxes of ions and water in the blood-brain barrier. J Cereb Blood Flow [Suppl 1] 3:415–416

    Google Scholar 

  • Dibona DR, Givan MM (1973) Pathways for movement of ions and water across toad urinary bladder. J Membrane Biol 12:101–128

    Google Scholar 

  • Dorovini-Zis K, Sato M, Goping G, Rapoport S, Brightman M (1983) Ionic lanthanum passage across cerebral endothelium exposed to hyperosmotic arabinose. Acta Neuropathol (Berl) 60:49–60

    Google Scholar 

  • Eisenberg HM, McLennan JE, Welch K (1974a) Ventricular perfusion in cats with kaolin-induced hydrocephalus. J Neurosurg 41:20–28

    Google Scholar 

  • Eisenberg HM, McLennan JE, Welch K, Treves S (1974b) Radioisotope ventriculography in cats with kaolin-induced hydrocephalus. Radiology 110:399–402

    Google Scholar 

  • Gomez DG, Potts DG (1977) Effects of pressure on the arachnoid villus. Exp Eye Res Vol. 25 [Suppl]:117–125

    Google Scholar 

  • Gopinath GN, Baatia R, Gopinath PG (1979) Ultrastructural observations in experimental hydrocephalus in the rabbit. J Neurol Sci 43:333–344

    Google Scholar 

  • Hahm H, Ferszt R, Müller R, Cervós-Navarro J (1980) Topography of diffuse brain edema. In: Cervós-Navarro J, Ferszt R (eds) Brain edema-pathology, diagnosis, and therapy. Adv Neurol, vol 28, Raven Press, New York, pp 299–315

    Google Scholar 

  • Harned HS, Owen BB (1958) The physiological chemistry of electrolytic solutions, 3rd edn. Reinhold, New York, pp 164, 700, 702

    Google Scholar 

  • Hiratsuka H, Tabata H, Tsuruoka S, Aoyagi M, Okada K, Inaba Y (1982) Evaluation of periventricular hypodensity in experimental hydrocephalus by metrizamide CT ventriculography. J Neurosurg 56:235–340

    Google Scholar 

  • Hochwald GM, Sahar R, Sadik AR, Ransohoff J (1969) Cerebrospinal fluid production and histological observations in animals with experimental obstructive hydrocephalus. Exp Neurol 25:190–199

    Google Scholar 

  • Hochwald GM, Boal RD, Martin AE, Kuman AJ (1975) Changes in regional blood-flow and water content of brain and spinal cord in acute and chronic experimental hydrocephalus. Dev Med Child Neurol [Suppl 35] 17:42–50

    Google Scholar 

  • Hochwald GM, Nakamura S, Camins MB (1981) The rat in experimental obstructive hydrocephalus. Z Kinderchir 34:403–410

    Google Scholar 

  • Hopkins LN, Bakay L, Kinkel WR, Grand W (1977) Demonstration of transventricular CSF absorption by computerized tomography. Acta Neurochir 39:151–157

    Google Scholar 

  • Lux WE, Hochwald GM, Sahar A, Ransohoff J (1970) Periventricular water content. Arch Neurol 23:475–479

    Google Scholar 

  • Mihorat TH, Clark RG, Hammock MK, McGrath PP (1970) Structural, ultrastructural and permeability changes in the ependyma and surrounding brain favoring equilibration in progressive hydrocephalus. Arch Neurol 22:397–407

    Google Scholar 

  • Milhorat TH, Davis DA, Hammock MK (1975) Experimental intracerebral movement of electron-microscopic tracers of various molecular size. J Neurosurg 42:315–329

    Google Scholar 

  • Mori K, Handa H, Murata T, Nakano Y (1980) Periventricular lucency in computed tomography of hydrocephalus and cerebral atrophy. J Comput Assist Tomogr 4:204–209

    Google Scholar 

  • Nag S, Robertson DM, Diensdale HB (1980) Morphological changes in spontaneously hypertensive rats. Acta Neuropathol (Berl) 52:27–34

    Google Scholar 

  • Nag S, Robertson DM, Diensdale HB (1982) Intracerebral arteriolar permeability of lanthanum. Am J Pathol 107:336–341

    Google Scholar 

  • Nagy Z, Mathieson G, Hüttner I (1979a) Blood-brain barrier opening to horseradish peroxidase in acute arterial hypertension. Acta Neuropathol (Berl) 48:45–53

    Google Scholar 

  • Nagy Z, Papius HM, Mathieson G, Hüttner I (1979b) Opening of tight junctions in cerebral endothelium. I. Effect of hyperosmolar mannitol infused through the internal carotid artery. J Comp Neurol 185:569–578

    Google Scholar 

  • Nagy Z, Mathieson G, Hüttner I (1979c) Opening of tight junction of cerebral endothelium. II. Effect of pressure-pulse induced acute arterial hypertension. J Comp Neurol 185:579–586

    Google Scholar 

  • Nakagawa Y, Cervós-Navarro J, Artigas J (1984) A possible paracellular route for the resolution of hydrocephalic edema. Acta Neuropathol (Berl) (1984) 64:122–128

    Google Scholar 

  • Nakamura S, Camins MB, Hochwald GM (1983) Pressure-absorption responses to the infusion of fluid into the spinal cord central canal of kaolin-hydrocephalic cats. J Neurosurg 58:198–203

    Google Scholar 

  • Ogata J, Hochwald GM, Cravioto H, Ransohoff J (1972a) Distribution of intraventricular horseradish peroxidase in normal and hydrocephalic cats. J Neuropathol Exp Neurol 31:154–163

    Google Scholar 

  • Ogata J, Hochwald GM, Cravioto H, Ransohoff J (1972b) Light and electron microscopic studies of experimental hydrocephalus. Acta Neuropathol (Berl) 21:213–223

    Google Scholar 

  • Sahar A, Hochwald GM, Ransohoff J (1969) Alternate pathway for cerebrospinal fluid absorption in animals with experimental obstructive hydrocephalus. Exp Neurol 25:200–206

    Google Scholar 

  • Simpson I, Rose B, Loewenstein WR (1977) Size limit of molecules permeating the junctional membrane channels. Science 195:294–296

    Google Scholar 

  • Torvik A, Bhatia R, Nyberg-Hansen R (1976) The pathology of experimental obstructive hydrocephalus. Neuropathol Appl Neurobiol 2:41–52

    Google Scholar 

  • Tripathi BJ, Tripathi RC (1974) Vacuolar transcellular channels as a drainage pathway for cerebrospinal fluid. J Physiol 239:195–206

    Google Scholar 

  • Wade JB, Revel J, Discala V (1973) Effect of osmotic gradients on intracellular junctions of the toad bladder. Am J Physiol 224:407–415

    Google Scholar 

  • Weller RO, Wiśniewsky H (1969) Histological and ultrastructural changes with experimental hydrocephalus in adult rabbits. Brain 92:819–829

    Google Scholar 

  • Weller RO, Wiśniewsky H, Shulman K, Terry RD (1971) Experimental hydrocephalus in young dogs: Histological and ultrastructural study of the brain tissue damage. J Neuropathol Exp Neurol 30:613–626

    Google Scholar 

  • Weller RO, Michell J, Griffin RL, Gardner MJ (1978) The effect of hydrocephalus upon the developing brain. J Neurol Sci 36:383–402

    Google Scholar 

  • Westergaard E, Deurs B, Bronsted HE (1977) Increased vesicular transfer of horseradish peroxidase across cerebral endothelium, evoked by acute hypertension. Acta Neuropathol (Berl) 37:141–152

    Google Scholar 

  • Wissig S, Williams MC (1978) Permeability of muscle capillaries ot microperoxidase. J Cell Biol 76:341–359

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakagawa, Y., Cervós-Navarro, J. & Artigas, J. Tracer study on a paracellular route in experimental hydrocephalus. Acta Neuropathol 65, 247–254 (1985). https://doi.org/10.1007/BF00687004

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00687004

Key words

Navigation