Journal of comparative physiology

, Volume 119, Issue 2, pp 155–170 | Cite as

The effect of a decrease in salinity on respiration, Osmoregulation and activity in the shore crab,Carcinus maenas (L.) at different acclimation temperatures

  • E. W. Taylor
  • P. J. Butler
  • A. Al-Wassia
Article

Summary

  1. 1.

    The rates of oxygen consumption (\(\dot V_{{\text{O}}_2 } \)) of individual crabs varied with their live mass. Mean\(\dot V_{{\text{O}}_2 } \) increased with acclimation temperature in 100% seawater (Q10 2.36) but not in 50% seawater.

     
  2. 2.

    Exposure to 50% seawater caused a significant increase in\(\dot V_{{\text{O}}_2 } \) to twice the rate in 100% seawater at 10°C. There was no significant increase in\(\dot V_{{\text{O}}_2 } \) on dilution at 18°C (Fig. 5).

     
  3. 3.

    Heart rate, ventilation volume (\(\dot V\)) and a-VO2 content difference were unaffected by dilution. The rise in\(\dot V_{{\text{O}}_2 } \), following dilution at 10°C may, as far as the cardiovascular system is concerned, arise from an increase in cardiac stroke volume.

     
  4. 4.

    Crabs were isosmotic with 100% seawater at 10°C, 14°C and 18°C. In 50% seawater all crabs showed a significant reduction in blood osmolarity, though they maintained the ΔF.p. and Na+ concentration significantly above that of the medium. Crabs acclimated to 10°C maintained a significantly higher blood ΔF.p. and Na+ concentration in 50% seawater than crabs at 18°C (Fig. 6).

     
  5. 5.

    Crabs acclimated to 10°C were significantly more active after exposure to 50% seawater. There was no significant change in activity, following dilution, in crabs at 18°C (Fig. 7).

     
  6. 6.

    The variations in\(\dot V_{{\text{O}}_2 } \) with temperature and salinity seem to relate to the measured changes in patterns of osmoregulation and activity. At 10°CCarcinus osmoregulates more effectively than at 18°C and is hyperactive in low salinities, which may represent an avoidance reaction. At 18°C, the summer temperature, the crab tolerates internal dilution and is relatively quiescent.

     

Keywords

Oxygen Heart Rate Respiration Oxygen Consumption Human Physiology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahsanullah, M., Newell, R.C.: Factors affecting the heart rate of the shore crabCarcinus maenas L. Comp. Biochem. Physiol.39A, 277–283 (1971)Google Scholar
  2. Al-Wassia, A.H., Butler, P.J., Taylor, E.W.: Respiration in the shore crabCarcinus maenas L.. J. Physiol.256, 76–77P (1976)Google Scholar
  3. Armstrong, F.A.J., Butler, E.I., Boalch, G.T.: Hydrographic and nutrient chemistry surveys in the Western English Channel during 1961 and 1962. J. Mar. Biol. Ass. U.K.50, 883–905 (1970)Google Scholar
  4. Arudpragasam, K.D., Naylor, E.: Gill ventilation volumes, oxygen consumption and respiratory rhythms inCarcinus maenas. J. exp. Biol.41, 309–322 (1964)Google Scholar
  5. Atkinson, R.J.A., Parsons, A.J.: Seasonal patterns of migration and locomotor rhythmicity in populations ofCarcinus. Neth. J. Sea Res.7, 81–93 (1973)Google Scholar
  6. Brett, J.R.: Some considerations in the study of respiratory metabolism in fish, particularly salmon. J. Fish Res. Board. Canada19, 1025–1038 (1962)Google Scholar
  7. Butler, P.J., Taylor, E.W.: Response of the dogfish (Scyliorhinus canicula L.) to slowly induced and rapidly induced hypoxia. Comp. Biochem. Physiol.39A, 307–323 (1971)Google Scholar
  8. Butler, P.J., Taylor, E.W.: The effect of progressive hypoxia on respiration in the dogfish (Scyliorhinus canicula) at different seasonal temperatures. J. exp. Biol.63, 117–130 (1975)Google Scholar
  9. Cooper, L.H.N.: Sea temperatures in Plymouth Sound. J. Mar. Biol. Ass. U.K.37, 1–3 (1958)Google Scholar
  10. Dehnel, P.A.: Effect of temperature and salinity on the oxygen consumption of two intertidal crabs. Biol. Bull. Woods Hole118, 215–249 (1960)Google Scholar
  11. Duval, M.: Recherches physio-chimiques et physiologiques sur le milieu intérieur des animaux aquatiques. Modifications sous l'influence du milieu extérieur. Ann. Inst. Oceanogr.2, 232–407 (1925)Google Scholar
  12. Flemister, L.J., Flemister, S.C.: Chloride ion regulation and oxygen consumption in the crab.Ocypode albicans. Biol. Bull.101, 259–273 (1951)Google Scholar
  13. Gilles, R.: Oxygen consumption as related to the amino acid metabolism during osmoregulation in the blue crabCallinectes sapidus. Neth. J. Sea Res.7, 280–289 (1973)Google Scholar
  14. Gross, W.J.: A behavioural mechanism for osmotic regulation in a semiterrestrial crab. Biol. Bull.113, 168–274 (1957)Google Scholar
  15. Harvey, H.W.: The chemistry and fertility of sea waters. Cambridge: University Press 1955Google Scholar
  16. Henze, M.: Über den Einfluß des Sauerstoffdrucks auf den Gaswechsel einiger Meerestiere. Biochem. Z.26, 255–278 (1910)Google Scholar
  17. Johansen, K., Lenfant, C., Mecklenberg, T.A.: Respiration in the crabCancer magister. Z. vergl. Physiol.70, 1–19 (1970)Google Scholar
  18. Kinne, O.: The effects of temperature and salinity on marine and brackish water animals. II. Salinity and temperature salinity combinations. Oceanogr. Mar. Biol. Ann. Rev.2, 281–339 (1964)Google Scholar
  19. Krogh, A.: Osmotic regulation in aquatic animals. Cambridge: University Press 1939Google Scholar
  20. Lockwood, A.P.M.: Some effects of temperature and concentration of the medium on the ionic regulation of the isopod,Asellus aquaticus. J. exp. Biol.37, 614–630 (1960)Google Scholar
  21. Lofts, B.: The effect of salinity changes on the respiratory rate of the prawnPalaemonetes varians. J. exp. Biol.33, 730–736 (1956)Google Scholar
  22. Maetz, J.: Branchial sodium exchange and ammonia excretion in the goldfishCarassius auratus. Effects of ammonia loading and temperature changes. J. exp. Biol.56, 601–620 (1972)Google Scholar
  23. Naylor, E.: Tidal and durnial rhythms of locomotory activity inCarcinus maenas (L). J. exp. Biol.35, 602–610 (1958)Google Scholar
  24. Naylor, E.: Seasonal changes in a population ofCarcinus maenas (L). in the littoral zone. J. Anim. Ecol.31, 601–609 (1962)Google Scholar
  25. Needham, A.E.: Factors affecting nitrogen excretion inCarcinus maenas. Physiol. comp. Oecol.4, 209–239 (1957)Google Scholar
  26. Panikkar, N.K.: Influence of temperature on osmotic behaviour of some crustacea and its bearing on problems of animal distribution. Nature (Lond.)146, 366–367 (1940)Google Scholar
  27. Panikkar, N.K.: Osmoregulation in some palaemonid prawns. J. Mar. Biol. Ass. U.K.25, 317–359 (1941)Google Scholar
  28. Potts, W.T.W., Parry, G.: Osmotic and ionic regulation in animals. Oxford: Pergamon Press 1964Google Scholar
  29. Precht, H., Laudien, H., Hausteen, B.: The normal temperature range 1: Temperature and life (ed. H. Precht) Berlin-Heidelberg-New York: Springer 1973Google Scholar
  30. Remane, A., Schlieper, C.: Die Biologie des Brackwassers. Stuttgart: E. Schwiezerbartische Verlagsbuchhandlung (1958)Google Scholar
  31. Robertson, J.D.: Osmotic and ionic regulation in aquatic invertebrates. In: Physiology of invertebrate animals (ed. B.T. Scheer). Eugene, Oregon: University of Oregon Press 1957Google Scholar
  32. Schlieper, C.: Über die Einwirkung niedriger Salzkonzentration auf marine Organismen. Z. vergl. Physiol.9, 478–514 (1929)Google Scholar
  33. Schwabe, E.: Über die Osmoregulation verschiedener Krebse (Malacostracen). Z. vergl. Physiol.19, 183–236 (1933)Google Scholar
  34. Shaw, J.: Studies on ionic regulation inCarcinus maenas (L). J. exp. Biol.38, 135–152 (1961)Google Scholar
  35. Siebers, D., Lucu, C., Sperling, K.R., Eberlein, K.: Kinetics of osmoregulation in the crabCarcinus maenas. Mar. Biol.17, 291–303 (1972)Google Scholar
  36. Spaargaren, D.H.: Heat production in the shore crabCarcinus maenas and its relation to osmotic stress. Proc. 9th Europ. Mar. Biol. Symp. 475–482 (1975)Google Scholar
  37. Taylor, A.C.: The respiratory responses ofCarcinus maenas to declining oxygen tension. J. exp. Biol.65, 309–322 (1976)Google Scholar
  38. Taylor, E.W., Butler, P.J.: The behaviour and physiological responses of the shore crabCarcinus maenas during changes in environmental oxygen tension. Neth. J. Sea Res.7, 496–505 (1973)Google Scholar
  39. Taylor, E.W., Butler, P.J., Sherlock, P.J.: The respiratory and cardiovascular changes associated with the emersion response ofCarcinus maenas L. during environmental hypoxia, at three different temperatures. J. comp. Physiol.86, 95–115 (1973)Google Scholar
  40. Todd, M.E., Dehnel, P.A.: The influence of temperature and salinity on heat tolerance in two grapsoid crabs. Biol. Bull.118, 150–172 (1960)Google Scholar
  41. Truchot, J.P.: Fixation de l'oxygène par le sérum deCarcinus maenas (L.) (Crustáce Decapode Brachyoure). C.r. Lebd. Séanc. Acad. Sc., Paris.272, 984–987 (1971)Google Scholar
  42. Verwey, J.: A plea for the study of temperature influence on osmotic regulation. Ann. Biol.33, 129149 (1957)Google Scholar
  43. Wallace, J.C.: Activity and metabolic rate in the shore crab,Carcinus maenas. Comp. Biochem. Physiol.41A, 523–533 (1972)Google Scholar
  44. Weber, R.E., Spaargaren, D.H.: On the influence of temperature on the osmoregulation ofCrangon crangon and its significance under estuarine conditions. Neth. J. Sea Res.5, 108–120 (1971)Google Scholar
  45. Welsh, J.H., Smith, R.I.: Laboratory exercises in invertebrate physiology (2nd ed.). Minneapolis: Burgess 1960Google Scholar
  46. Wikgren, B.: Osmotic regulation in some aquatic animals with special reference to the influence of temperature. Acta. Zool. Fennica71, 1–102 (1953)Google Scholar
  47. Wood, C.M., Randall, D.J.: The influence of swimming activity on water balance in the rainbow trout (Salmo gairdneri). J. comp. Physiol.82, 257–276 (1973a)Google Scholar
  48. Wood, C.M., Randall, D.J.: The influence of swimming activity on sodium balance in the rainbow trout (Salmo gairdneri) J. comp. Physiol.82, 207–233 (1973b)Google Scholar
  49. Yonge, C.M.: The sea shore. London: Collins 1949Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • E. W. Taylor
    • 1
  • P. J. Butler
    • 1
  • A. Al-Wassia
    • 1
  1. 1.Department of Zoology and Comparative PhysiologyUniversity of BirminghamBirminghamU.K.

Personalised recommendations