Skip to main content
Log in

The solubility and isotopic fractionation of gases in dilute aqueous solution. IIa. solubilities of the noble gases

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A method for the analysis of precise gas solubility data is presented and applied to new determinations of the Henry constant, k2, for He, Ne, Ar, Kr, and Xe. The values of k2 are fitted to the same sets of temperature functions which we have tried for oxygen. Our previously proposed power series in 1/T, ln(k2/P )=a0+a1/T+a2/T2 (Mark I), gives the best 3-term fit within the temperature range 0–60°C. For use over the full range to the critical temperature of water, we have discovered a new function given by (T*)2ln(k2/P )=A0(T*)2+A1(1-T*)1/3+A2(1-T*)2/3(Mark II), where T*≡T/T c1 . It fits our data from 0–60°C nearly as well as Mark I; it fits high temperature data from other sources; and at the critical temperature of water it satisfies theoretical requirements. Expansion of Mark II reveals the relationship between Mark II and Mark I and leads to a 4-term smoothing function, ln(k2/P )=a−2(T*)−2+a−1(T*)−1+a0+a1T* (Mark III), which we believe gives the best values only for the 0–60°C range. Mark III is used to calculate values for\(\Delta \bar G^\theta ,\Delta \bar H^\theta ,\Delta \bar S^\theta \), and\(\Delta \bar C^\theta \), 0–60°C, and a procedure is empolyed to estimate the errors. Agreement is excellent between these results and those obtained from precise microcalorimetric measurements made by others. With the inclusion of pressure correction terms, Mark II yields the four thermodynamic function changes for use at high temperatures. With increasing temperature, these changes suddenly turn upward toward plus infinity as T c1 is approached. Essentially direct determinations of\(\Delta \bar C^\theta \) for argon by other workers are in excellent agreement with our results. The symmetrical activity coefficient at infinite dilution, γ °2 is examined and the hypothetical properties of k2 are explored below 0°C. Mark II can be expressed in the reduced form (T*)2ln(k *2 )=A1(1-T*)1/3+A2(1-T*)2/3, where k *2 k 2/(p c1φ2c1). A2 is a very good linear fit to A1, which suggests a characteristic temperature for water at 287.3 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. B. Benson, D. Krause, Jr., and M. A. Peterson,J. Solution Chem. 8, 655 (1979).

    Google Scholar 

  2. Water, A Comprehensive Treatise, F. Franks, ed., (Plenum Press, New York, 1972).

    Google Scholar 

  3. F. H. Stillinger,Science 209, 451 (1980).

    Google Scholar 

  4. B. B. Benson,Proceedings Symposium on Marine Geochemistry (University of Rhode Island, Providence, 1964).

    Google Scholar 

  5. R. H. Bieri, inThe Sea, E. D. Goldberg, ed., (John Wiley and Sons, New York, 1974), Chap. 6.

    Google Scholar 

  6. W. J. Jenkins,J. Marine Res. 38, 533 (1980).

    Google Scholar 

  7. J. S. Hovis, J. J. McKeown, D. Krause, Jr., and B. B. Benson, inGas Transfer at Water Surfaces, W. Brutsaert and G. H. Jirka, eds. (D. Reidel, Boston, 1984), pp. 403–411.

    Google Scholar 

  8. R. Battino and H. L. Clever,Chem. Rev. 66, 395 (1966).

    Google Scholar 

  9. E. Wilhelm, R. Battino, and R. J. Wilcock,Chem. Rev. 77, 219 (1977).

    Google Scholar 

  10. T. R. Rettich, Y. P. Handa, R. Battino, and E. Wilhelm,J. Phys. Chem. 85, 3230 (1981).

    Google Scholar 

  11. B. B. Benson and D. Krause, Jr.J. Solution Chem. 18, 803 (1989).

    Google Scholar 

  12. T. Enns, P. F. Scholander, and E. D. Bradstreet,J. Phys. Chem. 69, 389 (1965).

    Google Scholar 

  13. J. C. Moore, R. Battino, T. R. Rettich, Y. P. Handa, and E. Wilhelm,J. Chem. Eng. Data 27, 22 (1982).

    Google Scholar 

  14. R. F. Weiss and T. K. Kyser,J. Chem. Eng. Data 23, 69 (1978).

    Google Scholar 

  15. W. L. Masterton,J. Chem. Phys. 22, 1830 (1954).

    Google Scholar 

  16. T. R. Rettich, R. Battino, and E. Wilhelm,J. Solution Chem. 13, 335 (1984).

    Google Scholar 

  17. W. A. Gerth,J. Solution Chem. 12, 655 (1983), and references therein.

    Google Scholar 

  18. J. M. H. L. Sengers, M. Klein, and J. S. Gallagher, inAmerican Institute of Physics Handbook, 3rd edn., D. E. Gray and M. W. Zemansky, eds., (McGraw-Hill. New York, 1972).

    Google Scholar 

  19. J. H. Dymond and E. B. Smith,The Virial Coefficients of Pure Gases and Mixtures (Clarendon Press, Oxford, 1980).

    Google Scholar 

  20. J. P. O'Connell, Ph.D. Thesis, University of California, Berkeley, 1967.

  21. B. B. Benson and D. Krause, Jr.,J. Chem. Phys. 64, 689 (1976).

    Google Scholar 

  22. S. Valentiner,Z. Phys. 42, 253 (1927).

    Google Scholar 

  23. E. C. W. Clarke and D. N. Glew,Trans. Faraday Soc. 62, 539 (1966).

    Google Scholar 

  24. E. F. Stephan, N. S. Hatfield, R. S. Peoples, and H. A. H. Pray, USAEC BMI-1067 (1956).

  25. D. Beutier and H. Renon,AIChE J. 24, 1122 (1978).

    Google Scholar 

  26. W. Hayduk and H. Laudie,AIChE J. 19, 1233 (1973).

    Google Scholar 

  27. H. A. Pray, C. E. Schweickert, and B. H. Minnich,Ind. Eng. Chem. 44, 1146 (1952).

    Google Scholar 

  28. R. W. Potter II and M. A. Clynne,J. Solution Chem. 7, 837 (1978).

    Google Scholar 

  29. R. Crovetto, R. Fernandez-Prini, and M. L. Japas,J. Chem. Phys. 76, 1077 (1982).

    Google Scholar 

  30. J. T. Phillips, C. U. Linderstrom-Lang, and J. Bigeleisen,J. Chem. Phys. 56, 5053 (1972).

    Google Scholar 

  31. C. E. Klots and B. B. Benson,J. Marine Res. 21, 48 (1963).

    Google Scholar 

  32. A. Ben Naim and S. Baer,Trans. Faraday Soc. 59, 2735 (1963).

    Google Scholar 

  33. E. Douglas,J. Phys. Chem. 68, 169 (1964).

    Google Scholar 

  34. C. N. Murray and J. P. Riley,Deep-Sea Res. 17, 203 (1970).

    Google Scholar 

  35. R. F. Weiss,J. Chem. Eng. Data 16, 235 (1971).

    Google Scholar 

  36. P. F. Scholander,J. Biol. Chem. 167, 235 (1947).

    Google Scholar 

  37. G. Olofsson, A. A. Oshodi, E. Qvarnström, and I. Wadsö,J. Chem. Thermodyn. 16, 1041 (1984).

    Google Scholar 

  38. S. F. Dec and S. J. Gill,J. Solution Chem. 14, 417 (1985).

    Google Scholar 

  39. D. R. Biggerstaff, D. E. White, and R. H. Wood,J. Phys. Chem. 89, 4378 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krause, D., Benson, B.B. The solubility and isotopic fractionation of gases in dilute aqueous solution. IIa. solubilities of the noble gases. J Solution Chem 18, 823–873 (1989). https://doi.org/10.1007/BF00685062

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00685062

Key words

Navigation