Skip to main content
Log in

Effects of lithium on morphological characteristics of dissociated brain cells in culture

  • Original Works
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Summary

Lithium chloride was added in 5 and 10 mM concentrations for different periods of exposition time to dissociated cultures obtained from chicken embryonic brain. When supplementing lithium at day 1 in vitro for five days, a dose-dependent decrease in total protein was observed in the cultures as compared to the sodium-treated controls. Profound reduction was revealed in the length of neuronal processes and in the number of neuronal cell bodies by phase contrast microscopy and by morphometric means. After exposition of lithium in 10 mM concentration for 48 h, beside a slight decrease in number of perikaryons, a marked reduction in process length of neural elements was observed in the 6-day-old tissue cultures. Ultrastructurally, swollen and degenerating nerve processes have been found after lithium treatment suggesting a particular sensitivity of these structures to lithium ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amdisen, A.: Monitoring of lithium treatment through determination of lithium concentration. Dan. Med. Bull.22, 277–291 (1975)

    Google Scholar 

  • Angst, J., Weis, P.: Lithium prophylaxis in recurrent affective disorders. Br. J. Psychiatry116, 604–614 (1970)

    Google Scholar 

  • Armett, C. J., Ritchie, J. M.: On the permeability of mammalian nonmyelated fibres to sodium and lithium ions. J. Physiol. (Lond.)165, 130–140 (1963)

    Google Scholar 

  • Baastrup, P.: Prophylactic lithium: double blind discontinuation in manic depressive and recurrent depressive disorders. LancetII, 326–330 (1970)

    Google Scholar 

  • Beaugé, L.: The interaction of lithium ions with the sodiumpotassium pump in frog skeletal muscle. J. Physiol. (Lond.)246, 397–420 (1975)

    Google Scholar 

  • Booher, J., Sensenbrenner, M.: Growth and cultivation of dissociated neurons and glial cells from embryonic chick, rat and human brain in flask cultures. Neurobiol.2, 97–105 (1972)

    Google Scholar 

  • Cohen, S. R., Lajtha, A.: Amino acid transport. In: Handbook of neurochemistry (ed. A. Lajtha, pp. 543–572. London: Plenum Press 1972

    Google Scholar 

  • Duhm, J., Eisenried, F., Becker, B. F., Greil, W.: Studies on the lithium transport across the red cell membrane. I. Li+ uphill transport by the Na+-dependent Li+ countertransport system of human erythrocytes. Pflügers Arch.364, 147–155 (1976)

    Google Scholar 

  • Funder, J., Tosteson, D. C., Wieth, J. O.: Effect of bicarbonate on lithium transport in human red cells. J. Gen. Physiol.71, 721–745 (1978)

    Google Scholar 

  • Haas, M., Schooler, J., Tosteson, D. C.: Coupling of lithium to sodium transport in human red cells. Nature258, 425–427 (1975)

    Google Scholar 

  • Herrero, F. A.: Lithium carbonate toxicity. J. Am. Med. Assoc.226, 1109–1110 (1973)

    Google Scholar 

  • Horowitz, L. C., Fisher, G. U.: Acute lithium toxicity. N. Engl. J. Med.281, 1369 (1969)

    Google Scholar 

  • Johnson, F. N., Vacaflor, L.: Lithium side-effects and toxicity. In: Lithium research and therapy (ed F. N. Johnson), pp. 519–531. London, New York, San Francisco: Academic Press 1975

    Google Scholar 

  • Mulder, A. H., Snyder, S. H.: Putative central neurotransmitters. In: Molecular and functional neurobiology (ed. W. H. Gispen), pp. 161–200. Amsterdam: Elsevier 1976

    Google Scholar 

  • Müller-Oerlinghausen, B.: 10 Jahre Lithium-Katamnese. Nervenarzt48, 483–493 (1977)

    Google Scholar 

  • Nelson, R. W., Cohen, J. L.: Plasma and erythrocyte kinetic considerations in lithium therapy. Am. J. Hosp. Pharm.33, 658–664 (1976)

    Google Scholar 

  • Pandey, G. N., Javaid, J. I., Davis, J. M., Tosteson, D. C.: Mechanism of lithium transport in red blood cells. Physiologist19, 321 (1976)

    Google Scholar 

  • Richelson, E.: Lithium ion entry through the sodium channel of cultured mouse neuroblastoma cells: A biochemical study. Science196, 1001–1002 (1977)

    Google Scholar 

  • Roizin, L., Akai, K., Lawler, H. C., Liu, J. C.: Lithium neurotoxicity effects. II. Electron microscope investigations. J. Neuropathol. Exp. Neurol.30, 142–143 (1971)

    Google Scholar 

  • Sarkadi, B., Tosteson, D. C., Pandey, G. N., Gunn, R. B.: Characteristics of Li+ transport in human red cells. Fed. Proc.36, 564 (1977)

    Google Scholar 

  • Schou, M., Thomsen, K.: Lithium prophylaxis of recurrent endogenous affective disorders. In: Lithium research and therapy (ed. F. N. Johnson), pp. 63–84. London, New York, San Francisco: Academic Press 1975

    Google Scholar 

  • Strayhorn, J. M., Jr., Nash, J. L.: Severe neurotoxicity despite “therapeutic” serum lithium levels. Dis. Nerv. Syst.38, 107–111 (1977)

    Google Scholar 

  • Thomas, R. C., Simon, W., Oehme, M.: Lithium accumulation by snail neurons measured by a new Li+-sensitive microelectrode. Nature258, 754–756 (1975)

    Google Scholar 

  • Vacaflor, L.: Lithium side-effects and toxicity: The clinical picture. In: Lithium research and therapy (ed. F. N. Johnson) pp. 211–225: London, New York, San Francisco: Academic Press 1975

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janka, Z., Szentistványi, I., Joo, F. et al. Effects of lithium on morphological characteristics of dissociated brain cells in culture. Acta Neuropathol 46, 117–121 (1979). https://doi.org/10.1007/BF00684812

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00684812

Key words

Navigation