Skip to main content
Log in

Poly(ethyl-n-butylsilylene): Structural, thermal, and flow properties of a liquid crystalline polysilane

  • Published:
Journal of Inorganic and Organometallic Polymers Aims and scope Submit manuscript

Abstract

Poly(ethyl-n-butylsilylene) (PEBS) was synthesized by sodium coupling of ethyl-n-butyldichorosilane and separated into fractions with differing molecular weights,M w=1.4×106 and 2.0×104. Both fractions were studied by differential scanning calorimetry and by X-ray diffraction, UV spectroscopy, polarizing optical microscopy, and capillary rheometry, all as a function of temperature. Both samples adopt a hexagonal columnar liquid crystalline structure at room temperature and below. They undergo a weak endothermic transition at −20°C and a first-order phase transition to a nematic liquid crystalline form at 90°C for the low and 170°C for the highM w fraction. Melting to an isotropic liquid takes place at 106°C for the low and 185°C for the highM w polymer. Both samples undergo two successive thermochromic transitions in the UV, one near the first-order exothermic transition and one near the −20°C transition; the reasons underlying these thermochromic transitions are discussed. Flow properties of PEBS were investigated as a function of molecular weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Matsumoto, K. Takada, H. Teramae, and M. Fujino, inSilicon-Based Polymer Science, J. M. Zeigler and F. W. G. Fearon, eds. (American Chemical Society, Washington, DC, 1990), pp. 517–541.

    Google Scholar 

  2. J. Michl,Synth. Metals 49, 367 (1992).

    Google Scholar 

  3. K. S. Schweitzer, L. A. Harrah, and J. M. Zeigler, inSilicon-Based Polymer Science, J. M. Zeigler and F. W. G. Fearon, eds. (American Chemical Society, Washington, DC, 1990), pp. 379–396.

    Google Scholar 

  4. For reviews see R. D. Miller and J. Michl,Chem. Rev. 89, 1359 (1989); R. West, inThe Chemistry of Organic Silicon Compounds, S. Patai and Z. Rappoport, eds. (John Wiley, New York, 1989), pp. 1207–1240.

    Google Scholar 

  5. E. K. Karikari, A. J. Gesco, B. L. Farmer, R. D. Miller, and J. F. Rabolt,Macromolecules 26, 3937 (1993).

    Google Scholar 

  6. H. Kuzmany, J. F. Rabolt, B. C. Farmer, and R. D. Miller,J. Chem. Phys. 85, 7413 (1986).

    Google Scholar 

  7. F. C. Schilling, F. A. Bovey, A. J. Lovinger, and J. M. Zeigler,Bull. Am. Phys. Soc. 33, 657 (1988).

    Google Scholar 

  8. T. Asuke and R. West,Macromolecules 24, 343 (1991); R. West, R. Menescal, T. Asuke, and J. Eveland,J. Inorg. Organomet. Polym. 4, 29–45 (1992).

    Google Scholar 

  9. BimodalM w distributions are commonly observed for polysilanes prepared by sodium coupling. For recent discussions see R. G. Jones, R. E. Benfield, R. W. Cragg, and A. C. Swain,J. Chem. Soc. Chem. Commun. 112 (1992); R. W. Cragg, R. G. Jones, A. C. Swain, and S. Webb,Macromolecules 26, 4878 (1993).

  10. P. Weber, D. Guillon, A. Skoulios, and R. D. Miller,Liq. Crystals 8, 825 (1990).

    Google Scholar 

  11. Nematic-isotropic transformations in polymers with limited chain flexibility are well known. See Z. Y. Cheu,Macromolecules 26, 3419 (1993); A. Ciferri, W. R. Krigbaum, and R. B. Meyer (eds.),Polymer Liquid Crystals (Academic Press, New York, 1982).

    Google Scholar 

  12. G. M. Wallraff, M. Baier, R. D. Miller, J. F. Rabolt, V. Hallmark, P. Cotts, and P. Shukla,Polym. Prepr. 30, 245 (1989).

    Google Scholar 

  13. C. A. Walsh, F. C. Schilling, R. B. MacGregor, Jr., A. J. Lovinger, D. D. Davis, F. A. Bovey, and J. M. Ziegler,Synth. Met. 28, c559 (1989).

    Google Scholar 

  14. C. H. Yuan and R. West,Macromolecules 26, 2645 (1993).

    Google Scholar 

  15. K. Schweitzer,J. Chem. Phys. 85, 1176 (1986);Synth. Met. 28, 565 (1989).

    Google Scholar 

  16. F. Shafiee, K. J. Haller, and R. West,J. Am. Chem. Soc. 108, 5478 (1986).

    Google Scholar 

  17. R. D. Miller, B. L. Farmer, W. Fleming, R. Sooriyakumaran, and J. F. Rabolt,J. Am. Chem. Soc. 109, 2509 (1987).

    Google Scholar 

  18. O. Kratky and G. Porod,Recl. Trav. Chim. Pays-Bas 68, 1106 (1949).

    Google Scholar 

  19. P. S. Flory,Statistical Mechanics of Chain Molecules (Wiley-Interscience, New York, 1969), Chap. 1.

    Google Scholar 

  20. For theoretical support for this model, see S. H. Tersigni and W. J. Welsh,Comput. Polym. Sci. 2, 1 (1992).

    Google Scholar 

  21. E. B. Bagley,J. Appl. Phys. 28, 624 (1959).

    Google Scholar 

  22. M. L. Williams, R. F. Landel, and J. D. Ferry,J. Am. Chem. Soc. 77, 3701 (1955); E. N. Andrade,Nature 125, 309 (1930).

    Google Scholar 

  23. W. E. Rochefort, G. W. Heffner, D. S. Pearson, R. D. Miller, and P. M. Cotts,Macromolecules 24, 4861 (1991).

    Google Scholar 

  24. H. Munstedt,Kuntstoffe 68, 94 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asuke, T., West, R. Poly(ethyl-n-butylsilylene): Structural, thermal, and flow properties of a liquid crystalline polysilane. J Inorg Organomet Polym 4, 45–59 (1994). https://doi.org/10.1007/BF00684027

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00684027

Key words

Navigation