Skip to main content
Log in

Theoretical aspects of the structure of polymeric phthalocyanines

  • Papers
  • Published:
Journal of Inorganic and Organometallic Polymers Aims and scope Submit manuscript

Abstract

Recent work on theoretical aspects of the structure of planar and stacked polymeric phthalocyanines is discussed. The regular structure of planar bridged polymeric phthalocyanines can be described mathematically by assuming the whole molecule placed in a Cartesian coordinate system. The resulting structure model agrees with analytical data. For example, the equationn=64/v 2, wheren is the number of phthalocyanine macrocycles in a planar bridged polymeric phthalocyanine andv (derived from IR spectra) is the number of end group-carrying bis(phthalonitrile) units per phthalocyanine ring, is derived from this model. An extended structure model yields fractal dimensions for planar bridged polymeric phthalocyanines. The positions of the bridges or substituents in bridged planar polymeric phthalocyanines cause different symmetries and different numbers of positional isomers for which equations are derived. Linear bridged and rectangular planar polymeric phthalocyanines have approximatelyi d/4 isomers, while square bridged planar polymeric phthalocyanines possess abouti d/8 isomers. Stacked substituted polymeric phthalocyanines have approximatelyi d/16 isomers, wherei d is the number of isomers which can be drawn on paper (i d=2m;m is the number of substituted phathalonitrile monomers in the polymeric phthalocyanine). The possible symmetries for polymeric planar and stacked phthalocyanines are discussed. Previous discussions of symmetry and numerical notation of stacked polymeric phthalocyanines with tetrasubstituted phthalocyanine rings are extended in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. C. Leznoff and A. B. P. Lever (eds.),Phthalocyanines, Properties and Applications (VCH, New York, 1989).

    Google Scholar 

  2. A. L. Thomas,Phthalocyanine Research and Applications (CRC Press, Boca Raton, FL, 1990).

    Google Scholar 

  3. A. W. Snow and J. R. Griffith, inEncyclopedia of Polymer Science and Engineering, Vol. 11 (J. Wiley & Sons, New York, 1988), p. 212.

    Google Scholar 

  4. D. Wöhrle,Adv. Polym. Sci. 50, 45 (1983).

    Google Scholar 

  5. M. Kaneko and D. Wöhrle,Adv. Polym. Sci. 84, 141 (1988).

    Google Scholar 

  6. C. S. Marvel and J. H. Rassweiler,J. Am. Chem. Soc. 80, 1197 (1958).

    Google Scholar 

  7. C. S. Marvel and M. M. Martin,J. Am. Chem. Soc. 80, 6600 (1958).

    Google Scholar 

  8. W. C. Drinkard and J. C. Bailar,J. Am. Chem. Soc. 81, 4795 (1959).

    Google Scholar 

  9. A. W. Snow, J. R. Griffith, and N. P. Marullo,Macromolecules 17, 1614 (1984).

    Google Scholar 

  10. D. Wöhrle, U. Marose, and R. Knoop,Makromol. Chem. 186, 2209 (1985).

    Google Scholar 

  11. D. Wöhrle and E. Preußner,Makromol. Chem. 186, 2189 (1985).

    Google Scholar 

  12. D. Wöhrle and B. Schulte,Makromol. Chem. 189, 1167 (1988).

    Google Scholar 

  13. D. Wöhrle and B. Schulte,Makromol. Chem. 189, 1229 (1988).

    Google Scholar 

  14. J. P. Linsky, T. R. Paul, R. S. Nohr, and M. E. Kenney,Inorg. Chem. 19, 3131 (1980).

    Google Scholar 

  15. J. Metz and M. Hanack,J. Am. Chem. Soc. 105, 828 (1983).

    Google Scholar 

  16. C. W. Dirk, T. Inabe, K. F. Schoch, Jr., and T. J. Marks,J. Am. Chem. Soc. 105, 1539 (1983).

    Google Scholar 

  17. K. Fischer and M. Hanack,Chem. Ber. 116, 1860 (1983).

    Google Scholar 

  18. J. Metz, G. Pawlowski, and M. Hanack,Z. Naturforsch. Teil B Anorg. Chem. Org. Chem. 38B, 378 (1983).

    Google Scholar 

  19. E. Orthmann and G. Wegner,Angew. Chem. Int. Ed. Engl. 25, 1105 (1986).

    Google Scholar 

  20. W. Caseri, T. Sauer, and G. Wegner,Makromol. Chem. Rapid Commun. 9, 651 (1988).

    Google Scholar 

  21. R. D. George, A. W. Snow, P. F. McMillan, and V. A. Burrows,J. Am. Chem. Soc. 114, 8286 (1992).

    Google Scholar 

  22. D. Wöhrle, J. Gitzel, I. Okura, and S. Aono,J. Chem. Soc. Perkin Trans. 2, 1171 (1985).

    Google Scholar 

  23. S. Gaspard and P. Maillard,Tetrahedron 43, 1083 (1987).

    Google Scholar 

  24. S. Greenberg, A. B. P. Lever, and C. C. Leznoff,Can. J. Chem. 66, 1059 (1988).

    Google Scholar 

  25. M. Hanack, G. Renz, J. Strähle, and S. Schmid,J. Org. Chem. 56, 3501 (1991).

    Google Scholar 

  26. Y. Ikeda, H. Konami, M. Hatano, and K. Mochizuki,Chem. Lett. 763 (1992).

  27. N. Kobayashi, T. Ashida, K. Hiroya, and T. Osa,Chem. Lett. 1567 (1992).

  28. N. Kobayashi, T. Ashida, and T. Osa,Chem. Lett. 2031 (1992).

  29. M. Hanack, D. Meng, A. Beck, M. Sommerauer, and L. R. Subramanian,J. Chem. Soc. Chem. Commun. 58 (1993).

  30. G. Schmid, M. Sommerauer, D. Meng, and M. Hanack, inProc. 5th Int. Conf. Macromol.-Metal Complex., Bremen, Germany (1993), p. 368.

  31. M. Hanack, G. Schmid, and M. Sommerauer,Angew. Chem. Int. Ed. Engl. 32, 1422 (1993).

    Google Scholar 

  32. G. Knothe and D. Wöhrle,Makromol. Chem. 190, 1573 (1989).

    Google Scholar 

  33. G. Knothe,Makromol. Chem. Theory Simul. 1, 187 (1992).

    Google Scholar 

  34. G. Knothe,Makromol. Chem. Theory Simul. 2, 503 (1993).

    Google Scholar 

  35. G. Knothe,Makromol. Chem. Theory Simul. 2, 917 (1993).

    Google Scholar 

  36. (a) B. B. Mandelbrot,The Fractal Geometry of Nature (W. H. Freeman, New York, 1983).

    Google Scholar 

  37. (b) D. Avnir (ed.),The Fractal Approach to Heterogeneous Chemistry (J. Wiley & Sons, Chichester, 1989).

    Google Scholar 

  38. (c) P. Meakin, inEncyclopedia of Polymer Science and Engineering, Suppl. Vol. (J. Wiley & Sons, New York, 1989), p. 323.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knothe, G. Theoretical aspects of the structure of polymeric phthalocyanines. J Inorg Organomet Polym 4, 325–340 (1994). https://doi.org/10.1007/BF00683724

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00683724

Key words

Navigation