Skip to main content

Advertisement

Log in

Binary ionic porphyrin self-assembly: Structures, and electronic and light-harvesting properties

  • Self-Assembled Porphyrin and Macrocycle Derivatives
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Porphyrins are a class of conjugated molecules that structurally and functionally resemble natural photosynthetic and enzymatic chromophores. Crystalline solids self-assembled from anionic and cationic porphyrins yield a new class of multifunctional optoelectronic micro- and nanomaterials. In this article, we provide details on the concept of binary ionic self-assembly (ISA) and ionized forms of porphyrins, as well as formation of hierarchical structures, including nanotubes, rods and ribbons, sheets, and three-dimensional clover-like shapes, spheres, and sheaf-like structures. We summarize key physical properties from ultraviolet–visible characterizations of J-aggregate, exciton delocalization and extended π–π stacking, and related electronic and light-harvesting properties of the structures. Depending on the molecular subunits, the functionalities of the ISA materials are altered. These ISA nanostructures possess attractive light-harvesting and charge- and energy-transport functionalities and allow access to a novel class of nanomaterials with potential for applications in sensors, photovoltaics, photocatalysis, and solar power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. C.M. Drain, A. Varotto, I. Radivojevic, Chem. Rev. 109, 1630 (2009).

    Google Scholar 

  2. Y. Chen, A. Li, Z. Huang, L. Wang, F. Kang, Nanomaterials 6, 51 (2016).

    Google Scholar 

  3. E. Shevchenko, D. Talapin, N. Kotov, S. O’Brien, C. Murray, Nature 439, 55 (2006).

    Google Scholar 

  4. C. Zhang, P. Chen, H. Dong, Y. Zhen, M. Liu, W. Hu, Adv. Mater. 27, 5379 (2015).

    Google Scholar 

  5. H. Ju, X. Zhang, J. Wang, in NanoBiosensing Principles, Development and Application, H. Ju, X. Zhang, J. Wang, Eds. (Springer, New York, 2011), pp. 111–146.

  6. T. Hasobe, H. Sakai, in Chemical Science of π-Electron Systems, T. Akasaka, A. Osuka, S. Fukuzumi, H. Kandori, Y. Aso, Eds. (Springer, Tokyo, 2015), pp. 475–491.

  7. Z. Wang, Z. Li, C.J. Medforth, J.A. Shelnutt. J. Am. Chem. Soc. 129, 2440 (2007).

  8. S. Hiroto, Y. Miyake, H. Shinokubo, Chem. Rev. 117, 2910 (2017).

    Google Scholar 

  9. J. Wang, Y. Zhong, X. Wang, W. Yang, F. Bai, B. Zhang, L. Alarid, K. Bian, H. Fan, Nano Lett. 17, 6916 (2017).

    Google Scholar 

  10. J. Wang, Y. Zhong, L. Wang, N. Zhang, R. Cao, K. Bian, L. Alarid, R.E. Haddad, F. Bai, H. Fan, Nano Lett. 16, 6523 (2016).

    Google Scholar 

  11. Y. Zhong, J. Wang, R. Zhang, W. Wei, H. Wang, X. Lü, F. Bai, H. Wu, R. Haddad, H. Fan, Nano Lett. 14, 7175 (2014).

    Google Scholar 

  12. P.L. Marek, in Biomimetic Dye Aggregate Solar Cells, P.L. Marek, Ed. (Springer International, New York, 2013), pp. 27–90.

  13. A. Pichon, Nat. Chem. 2, 611 (2010).

    Google Scholar 

  14. L.G. De, A. Romeo, V. Villari, N. Micali, I. Foltran, E. Foresti, I.G. Lesci, N. Roveri, T. Zuccheri, L.M. Scolaro, J. Am. Chem. Soc. 131, 6920 (2009).

    Google Scholar 

  15. K.W. Hipps, U. Mazur, J.R. Eskelsen, M. Adinehnia, in Handbook of Porphyrin Science, K.W. Hipps, U. Mazur, J.R. Eskelsen, M. Adinehnia, Eds. (World Scientific, Singapore, 2016), pp. 69–103.

  16. Z. Wang, K. Ho, C. Medforth, J. Shelnutt, Adv. Mater 18, 2557 (2006).

    Google Scholar 

  17. Z. Wang, C. Medforth, J. Shelnutt, J. Am. Chem. Soc. 126, 15954 (2004)

  18. K. Martin, Z. Wang, T. Busani, R. Garcia, Z. Chen, Y. Jiang, Y. Song, J. Jacobsen, T. Vu, N. Schore, B. Swartzentruber, C. Medforth, J. Shelnutt, J. Am. Chem. Soc. 132, 8194 (2010).

    Google Scholar 

  19. Z. Wang, L. Lybarger, W.Wang, C. Medforth, J. Miller, J. Shelnutt, Nanotechnology 19, 395604 (2008).

    Google Scholar 

  20. Y. Tian, C. Beavers, T. Busani, K. Martin, J. Jacobsen, B. Mercado, B. Swartzentruber, F. van Swol, C. Medforth, J. Shelnutt, Nanoscale 4, 1695 (2012).

    Google Scholar 

  21. J. Shelnutt, Y. Tian, K. Martin, C. Medforth, in Handbook of Porphyrin Science, J. Shelnutt, Y. Tian, K. Martin, C. Medforth, Eds. (World Scientific, Singapore, 2013), pp. 227–277.

  22. J. Shelnutt, C. Medforth, in Organic Nanomaterials: Synthesis, Characterization, and Device Applications, T. Torres, G. Bottari, Eds. (Wiley, Hoboken, NJ, 2013), pp. 103–130.

  23. Z. Wang, C. Medforth, J. Shelnutt, J. Am. Chem. Soc. 126, 16720 (2004).

    Google Scholar 

  24. C. Medforth, Z. Wang, K. Martin, Y. Song, J. Jacobsen, J. Shelnutt, Chem. Commun. 47, 7261 (2009).

    Google Scholar 

  25. Y. Tian, K. Martin, J. Shelnutt, L. Evans, T. Busani, J. Miller, C. Medforth, J. Shelnutt, Chem. Commun. 47, 6069 (2011).

    Google Scholar 

  26. C.J. Medforth, F.B. van Swol, in Office of Scientific & Technical Information Technical Reports (Sandia National Laboratories, Albuquerque, NM, 2010), pp. 4–10.

    Google Scholar 

Download references

Acknowledgements

Y.Z. acknowledges support from the National Natural Science Foundation of China (21802032), the Program for Changjiang Scholars, and the Innovative Research Team in University, Henan Province (No. PCS IRT_15R18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Y., Wang, J. & Tian, Y. Binary ionic porphyrin self-assembly: Structures, and electronic and light-harvesting properties. MRS Bulletin 44, 183–188 (2019). https://doi.org/10.1557/mrs.2019.40

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2019.40

Navigation