Journal of Low Temperature Physics

, Volume 55, Issue 3–4, pp 303–308 | Cite as

Upper critical field of Nb and Nb+1 at % Ta determined by calorimetric and magnetic methods

  • Zhang Dianlin 
  • Lin Shuyuan 
  • C. -G. Cui
  • Chen Zhaojia 
Article
  • 28 Downloads

Abstract

The upper critical fieldHc2 of single-crystal Nb and arc-melted Nb+1 at % Ta near the critical temperatureTc has been measured using both calorimetric and magnetic methods. In contrast with theHc2 curve determined by the magnetic measurement, which shows a clear upward curvature, the calorimetric measurement gives a nearly straight line nearTc. The data disagree with available models. A possible explanation is given.

Keywords

Magnetic Material Magnetic Measurement Critical Field Calorimetric Measurement Magnetic Method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. L. Fetter and P. C. Hohenberg, inSuperconductivity, R. D. Parks, ed. (Marcel Dekker, New York, 1969), Vol. 2, p. 817.Google Scholar
  2. 2.
    H. Devantay, J. L. Jorda, M. Decroux, J. Muller, and R. Flukiger,J. Mat. Sci. 16, 2145 (1981).Google Scholar
  3. 3.
    T. P. Orlando, E. J. McNiff, S. Foner, and M. R. Beasley,Phys. Rev. B 19, 4545 (1979).Google Scholar
  4. 4.
    B. J. Dalyrimple and D. E. Prober,Bull. Am. Phys. Soc. 23, 230 (1978).Google Scholar
  5. 5.
    N. Toyota, H. Natasujii, K. Nota, A. Hoshi, N. Kobayashi, and Y. Muto,J. Low Temp. Phys. 25, 483 (1976).Google Scholar
  6. 6.
    R. E. Somekh, C.-G. Cui, and J. E. Evetts,J. Low Temp. Phys. 50, 33 (1983).Google Scholar
  7. 7.
    W. H Butler,Phys. Rev. Lett. 44, 1516 (1980).Google Scholar
  8. 8.
    G. Deutscher, O. Entin-Wohlman, M. Rappaport, and Y. Shapira, inInhomogeneous Superconductors (AIP, New York, 1978), Vol. 79, p. 23.Google Scholar
  9. 9.
    V. Novotny and P. P. M. Meincke,J. Low Temp. Phys. 18, 147 (1975).Google Scholar
  10. 10.
    J. M. Daams and J. P. Carbotte,J. Low Temp. Phys. 43, 263 (1981).Google Scholar
  11. 11.
    T. Ohtsuka and Y. Kimura,Physica 55, 562 (1971).Google Scholar
  12. 12.
    H. A. Leupold and H. A. Boorse,Phys. Rev. 134, A1322 (1964).Google Scholar
  13. 13.
    F. J. Morin and J. P. Maita,Phys. Rev. 129, 1115 (1963).Google Scholar
  14. 14.
    T. McConville and B. Serin,Phys. Rev. 140A, 1169 (1965).Google Scholar
  15. 15.
    E. Helfand and N. R. Werthamer,Phys. Rev. 147, 288 (1966).Google Scholar
  16. 16.
    D. K. Finnemore, T. F. Stromberg, and C. A. Swenson,Phys. Rev. 149, 231 (1966).Google Scholar
  17. 17.
    G. Eilenberger,Phys. Rev. 153, 584 (1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • Zhang Dianlin 
    • 1
  • Lin Shuyuan 
    • 1
  • C. -G. Cui
    • 1
  • Chen Zhaojia 
    • 2
  1. 1.Institute of PhysicsChinese Academy of SciencesBeijingChina
  2. 2.University of Science and Technology of ChinaHefeiChina

Personalised recommendations