Skip to main content
Log in

Magnetic, Magnetocaloric, and Critical Properties of Fe84-xCr2+xB2Co2Zr10 Melt-Spun Ribbons

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Magnetic properties, magnetocaloric effect, and critical behavior of Fe84-xCr2+xB2Co2Zr10 (x = 1, 2, 3, 4, 5, and 6) rapidly quenched alloy ribbons prepared by melt-spinning method have been investigated. X-ray diffraction analysis shows that the ribbons are almost amorphous. All the ribbons exhibit soft magnetic behavior with a low coercivity, Hc < 20 Oe. The magnetic phase transition temperature of the alloy can be adjusted in the room temperature region by appropriate Cr concentrations. With increasing Cr concentration, Curie temperature (TC) of the alloys is reduced from 330 K (for x = 1) to 290 K (for x = 6). The quite high maximum magnetic entropy change, |ΔSm|max > 0.8 J.kg−1.K−1 (under a magnetic field change of 12 kOe), and the wide working temperature range, δT > 90 K, around room temperature, have been achieved on these alloy ribbons. The obtained results reveal that Fe84-xCr2+xB2Co2Zr10 alloys are potential candidates for the magnetic refrigerants at room temperature region. Using the Arrott-Noakes method, critical analyses around the ferromagnetic-paramagnetic phase transition elucidated the magnetic orders in the alloys. The critical parameters determined for Fe84-xCr2+xB2Co2Zr10 ribbons are close to those of the mean-field theory applied for the long-range ferromagnetic orders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Warburg, E.: Magnetische Untersuchungen. Ann. Phys. 249, 141–164 (1881)

    Article  Google Scholar 

  2. Gschneidnerr, K.A., Pecharsky Jr., V.K.: Magnetocaloric materials. Annu. Rev. Mater. Sci. 30, 387–429 (2000)

    Article  ADS  Google Scholar 

  3. Brück, E., Tegus, O., Thanh, D.T.C., Buschow, K.H.J.: Magnetocaloric refrigeration near room temperature. J. Magn. Magn. Mater. 310, 2793–2799 (2007)

    Article  ADS  Google Scholar 

  4. Gschneidner, K.A., Pecharsky Jr., V.K.: Thirty years of near room temperature magnetic cooling: where we are today and future prospects. Int. J. Refrig. 31, 945–961 (2008)

    Article  Google Scholar 

  5. Franco, V., Blázquez, J.S., Ipus, J.J., Law, J.Y., Moreno-Ramírez, L.M., Conde, A.: Magnetocaloric effect: from materials research to refrigeration devices. Prog. Mater. Sci. 93, 112–232 (2018)

    Article  Google Scholar 

  6. Taboada-Moreno, C.A., Sánchez-De Jesús, F., Pedro-García, F., Cortés-Escobedo, C.A., Betancourt-Cantera, J.A., Ramírez-Cardona, M., Bolarín-Miró, A.M.: Large magnetocaloric effect near to room temperature in Sr doped La0.7Ca0.3MnO3. J. Magn. Magn. Mater. 496, 165887 (2020)

    Article  Google Scholar 

  7. Su, L., Zhang, H., Zhou, H., Cong, D., Huang, R., Zhang, Y., Long, Y.: Rotating magnetocaloric effect over a wide room temperature range in oriented polycrystalline Nd1 − xTbxCo5. J. Appl. Phys. 127, 043905 (2020)

    Article  ADS  Google Scholar 

  8. Imad, H., Khan, S., Rao, N., Rao, Nageswara, T., Riyaz, U., Woo, K.J., Heun, K.B.: Tailoring the magnetic properties and magnetocaloric effect in double perovskites Sr2FeMo1–x Nb x O6. Sci. Adv. Mater. 12(3), 391–397 (2020)

    Article  Google Scholar 

  9. Orendáč, M., Gabáni, S., Gažo, E., Pristáš, G., Shitsevalova, N., Siemensmeyer, K., Flachbart, K.: Rotating magnetocaloric effect and unusual magnetic features in metallic strongly anisotropic geometrically frustrated TmB4. Sci. Rep. 8, 10933 (2018)

    Article  ADS  Google Scholar 

  10. Gottschall, T., Kuz'min, M.D., Skokov, K.P., Skourski, Y., Fries, M., Gutfleisch, O., Ghorbani Zavareh, M., Schlagel, D.L., Mudryk, Y., Pecharsky, V., Wosnitza, J.: Magnetocaloric effect of gadolinium in high magnetic fields. Phys. Rev. B. 99, 134429 (2019)

    Article  ADS  Google Scholar 

  11. Ghosh, S., Ghosh, S.: Cosubstitution in Ni-Mn-Sb Heusler compounds: realization of room-temperature reversible magnetocaloric effect driven by second-order magnetic transition. Phys. Rev. Mater. 4, 025401 (2020)

    Article  Google Scholar 

  12. Bau, L.V., An, N.M., Thi, N.L., Giang, L.T., Thanh, T.D., Phong, P.T., Yu, S.C.: Critical exponents and magnetocaloric effect in La0.7Sr0.3Mn1−xTixO3 (x = 0 and 0.05) compounds. J. Electron. Mater. 48(3), 1446–1455 (2019)

    Article  ADS  Google Scholar 

  13. Chen, L.S., Zhang, J.Z., Wen, L., Yu, P., Xia, L.: Outstanding magnetocaloric effect of Fe88−x Zr8B4Smx (x = 0, 1, 2, 3) amorphous alloys. Sci. China-Phys. Mech. Astron. 61(5), 056121 (2018)

    Article  ADS  Google Scholar 

  14. Han, L.A., Hua, X.H., Zhu, H.Z., Yang, J., Yang, H.P., Yan, Z.X., Zhang, T.: Study of critical behavior in amorphous Fe85Sn5Zr10 alloy ribbon. J. Electron. Mater. 46(2), 826–832 (2017)

    Article  ADS  Google Scholar 

  15. Li, X., Pan, Y., Lu, T.: Magnetocaloric effect in Fe-based amorphous alloys and their composites with low boron content. J. Non-Cryst. Solids. 487, 7–11 (2018)

    Article  ADS  Google Scholar 

  16. Yen, N.H., Ha, N.H., Thanh, P.T., Thanh, T.D., Ngoc, N.H., Dan, N.H.: Influence of Cr-addition on magnetic properties and magnetocaloric effect of Fe-Cr-B-Gd-Zr rapidly quenched alloys. J. Electron. Mater. 48(11), 7282–7291 (2019)

    Article  ADS  Google Scholar 

  17. Yu, P., Zhang, J.Z., Xia, L.: Fe87Zr7B4Co2 amorphous alloy with excellent magneto-caloric effect near room temperature. Intermetallics. 95, 85–88 (2018)

    Article  Google Scholar 

  18. Pati, S.P., Muftah Al-Mahdawi, M., Ye, S., Nozaki, T., Sahashi, M.: Control of spin-reorientation transition in (0001) oriented a-Fe2O3 thin film by external magnetic field and temperature. Phys. Status Solidi RRL. 11(7), 1700101 (2017)

    Article  Google Scholar 

  19. Fang, Y.K., Yeh, C.C., Hsieh, C.C., Chang, C.W., Chang, H.W., Chang, W.C., Li, X.M., Li, W.: Magnetocaloric effect in Fe–Zr–B–M (M=Mn, Cr, and Co) amorphous systems. c

  20. Li, X., Pan, Y.: Magnetocaloric effect in Fe-Zr-B-M (M = Ni, co, Al, and Ti) amorphous alloys. J. Appl. Phys. 116, 093910 (2014)

    Article  ADS  Google Scholar 

  21. Dan, N.H., Duc, N.H., Thanh, T.D., Yen, N.H., Thanh, P.T., Bang, N.A., Anh, D.T.K., Phan, T.L., Yu, S.C.: Magnetocaloric effect in Fe-Ni-Zr alloys prepared by using the rapidly-quenched method. J. Korean Phys. Soc. 62, 1715–1719 (2013)

    Article  ADS  Google Scholar 

  22. Wang, Y., Bi, X.: The role of Zr and B in room temperature magnetic entropy change of FeZrB amorphous alloys. Appl. Phys. Lett. 95, 262501 (2009)

    Article  ADS  Google Scholar 

  23. Guo, D.Q., Chan, K.C., Xia, L., Yu, P.: Magneto-caloric effect of FexZryB100−x−y metallic ribbons for room temperature magnetic refrigeration. J. Magn. Magn. Mater. 423, 379–385 (2017)

    Article  ADS  Google Scholar 

  24. Moon, Y., Kim, K.S., Yu, S.C., Kim, Y.C., Kim, K.Y.: The large magnetocaloric effect in amorphous Fe80-xMnxZr10 (x = 4, 6, 8, 10) alloys. J. Magn. 10, 142–144 (2005)

    Article  Google Scholar 

  25. Kim, K.S., Kim, Y.S., Zidanic, J., Min, S.G., Yu, S.C.: Magnetocaloric effect in as-quenched and annealed Fe91–xYxZr9 (x = 0.5, 10) alloys. Phys. Status. Solidi. A. 204, 4096–4099 (2007)

    Article  ADS  Google Scholar 

  26. Ipus, J.J., Ucar, H., McHenry, M.E.: Near room temperature magnetocaloric response of an (FeNi)ZrB alloy. IEEE Trans. Magn. 47, 2494–2497 (2011)

    Article  ADS  Google Scholar 

  27. Guo, D., Chan, K.C., Xia, L.: Influence of minor addition of Cr on the magnetocaloric effect in Fe-based metallic ribbons. Mater. Trans. 57, 9–14 (2016)

    Article  Google Scholar 

  28. Caballero-Flores, R., Franco, V., Conde, A., Knipling, K.E., Willard, M.A.: Influence of co and Ni addition on the magnetocaloric effect in Fe88−2xCoxNixZr7B4Cu1 soft magnetic amorphous alloys. Appl. Phys. Lett. 96, 182506 (2010)

    Article  ADS  Google Scholar 

  29. Mishra, D., Gurram, M., Reddy, A., Perumal, A., Saravanan, P., Srinivasan, A.: Enhanced soft magnetic properties and magnetocaloric effect in B substituted amorphous Fe–Zr alloy ribbons. Mater. Sci. Eng. B. 175, 253–260 (2010)

    Article  Google Scholar 

  30. Kim, K.S., Kang, B.S., Yu, S.C.: Magnetocaloric effect in heat-treated Fe90-xYxZr10 (x = 0, 5, 10) alloys. J. Korean Phys. Soc. 57(6), 1605–1608 (2010)

    Google Scholar 

  31. Thanh, T.D., Dan, N.H., Phan, T.L., Kumarakuru, H., Olivier, E.J., Neethling, J.H., Yu, S.C.: Critical behavior of the ferromagnetic-paramagnetic phase transition in Fe90-xNixZr10 alloy ribbons. J. Appl. Phys. 115, 023903 (2014)

    Article  ADS  Google Scholar 

  32. Atalay, S., Gencer, H., Kolat, V.S.: Magnetic entropy change in Fe74−xCrxCu1Nb3Si13B9 (x = 14 and 17) amorphous alloys. J. Non-Cryst. Solids. 351, 2373–2377 (2005)

    Article  ADS  Google Scholar 

  33. Tishin, A.M., Spichkin, Y.I.: The Magnetocaloric Effect and its Applications. IOP Publishing Ltd, Bristol and Philadelphia (2003)

    Book  Google Scholar 

  34. Wang, G.F., Li, H.L., Zhang, X.F., Ma, Q., Liu, Y., Li, Y., Zhao, Z.: Large magnetocaloric effect in Fe-B-Mn-Zr-Nb amorphous alloys near room temperature. J. Supercond. Nov. Magn. 29, 1837–1842 (2016)

    Article  Google Scholar 

  35. Banerjee, B.K.: On a generalised approach to first and second order magnetic transitions. Phys. Lett. 12, 16–17 (1964)

    Article  ADS  Google Scholar 

  36. Arrott, A., Noakes, J.E.: Approximate equation of state for nickel near its critical temperature. Phys. Rev. Lett. 19, 786–789 (1967)

    Article  ADS  Google Scholar 

  37. Widom, A.: Degree of the critical isotherm. J. Chem. Phys. 41, 1633–1634 (1964)

    Article  ADS  Google Scholar 

  38. Stanley, H.E.: Introduction to phase transitions and critical phenomena. Oxford University Press (1971)

Download references

Funding

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.02-2018.340. A part of the work was done in the Key Laboratory for Electronic Materials and Devices, and Laboratory of Magnetism and Superconductivity, Institute of Materials Science, VAST, Vietnam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Hai Yen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yen, N.H., Ha, N.H., Thanh, P.T. et al. Magnetic, Magnetocaloric, and Critical Properties of Fe84-xCr2+xB2Co2Zr10 Melt-Spun Ribbons. J Supercond Nov Magn 33, 3443–3449 (2020). https://doi.org/10.1007/s10948-020-05596-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05596-x

Keywords

Navigation