Skip to main content
Log in

Design and operation of a thermal sensor with micrometer-spatial resolution

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We have developed a simple superconducting thin film device that can be used as either a thermometer or a thermal conductivity sensor. Over a narrow range the device has somewhat better temperature resolution than a conventional germanium thermometer, but its main advantage is that it has very high spatial resolution. The fabrication and operation of the device are described, together with preliminary results of experiments in which it is used to study liquid4He very nearT λ. Potential improvements are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Ahlers, inThe Physics of Liquid and Solid Helium, K. H. Bennemann and J. B. Ketterson, eds. (Wiley, New York, 1976), part 1, p. 85.

    Google Scholar 

  2. R. J. von Gutfeld and A. H. Nethercot, Jr.,Phys. Rev. Lett. 12, 641 (1964); L. J. Challis and R. A. Sherlock,J. Phys. C 3, 1193 (1970); R. A. Sherlock, A. F. G. Wyatt, N. G. Mills, and N. A. Lockerbie,Phys. Rev. Lett. 29, 1299 (1972); V. Narayanamurti, R. C. Dynes, and K. Andres,Phys. Rev. B 11, 2500 (1975), and references therein.

    Google Scholar 

  3. W. J. Skocpol,Nonequilibrium Superconductivity, Phonons, and Kapitza Boundaries, K. E. Gray, ed. (Plenum, New York, 1981), p. 559.

    Google Scholar 

  4. G. Dharmadurai,Phys. Stat. Sol. (a)62, 11 (1980).

    Google Scholar 

  5. L. Caswell,Phys. Lett. 10, 44 (1964).

    Google Scholar 

  6. J. A. Pals and J. Wolter,Phys. Lett. 70A, 150 (1979).

    Google Scholar 

  7. J. A. Tyson,Phys. Rev. 166, 166 (1968).

    Google Scholar 

  8. G. Dharmadurai and B. A. Ratnam,Phys. Lett. 67A, 49 (1978).

    Google Scholar 

  9. V. A. Vololtskaya, A. Bogdzevich, L. E. Musienko, and Y. V. Kalekin,Cryogenics 18, 557 (1978).

    Google Scholar 

  10. Y. Kim, L-H. Lin, C. Chuang, and T. H. K. Frederking,Appl. Phys. Lett. 43, 451 (1983).

    Google Scholar 

  11. M. Dingus, F. Zhong, and H. Meyer,J. Low Temp. Phys. 65, 185 (1986);J. Low Temp. Phys. to be published.

    Google Scholar 

  12. R. V. Duncan, G. Ahlers, and V. Steinberg,Phys. Rev. Lett. 58, 377 (1987).

    Google Scholar 

  13. D. Frank and V. Dohm,Phys. Rev. Lett. 62, 1864 (1989).

    Google Scholar 

  14. G. Ahlers,Phys. Rev. 171, 275 (1967).

    Google Scholar 

  15. V. L. Ginzburg and A. A. Sobyanin,Usp. Fiz. Nauk. 120, 153 (1976) [Sov. Phys. Usp. 19, 733 (1976)].

    Google Scholar 

  16. A. Onuki,Prog. Theor. Phys. 70, 875 (1983);Jpn. J. Appl. Phys. 26, 365 (1987).

    Google Scholar 

  17. N. Giordano, P. Muzikar, and S. S. C. Burnett,Phys. Rev. B 36, 667 (1987); P. Muzikar and N. Giordano,Physica A 157, 742 (1989).

    Google Scholar 

  18. G. Jin and N. Giordano, to be published.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, G., Giordano, N. Design and operation of a thermal sensor with micrometer-spatial resolution. J Low Temp Phys 81, 55–69 (1990). https://doi.org/10.1007/BF00683152

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00683152

Keywords

Navigation