Skip to main content
Log in

Transverse surface impedance of pair-correlated Fermi liquids. Application to normal and superfluid3He

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Hydrodynamic experiments in quantum liquids at low temperatures are sensitively influenced by the interaction of the elementary excitations with the confining walls of the measuring cell. In the case of transverse oscillations of the walls such that the viscous penetration depth of the liquid is small compared to the container dimensions, the dynamical behavior of the quantum liquid is governed by the transverse surface of shear impedance. We calculate the shear impedance for an isotropic, pair-correlated Fermi liquid from a microscopic quasiparticle Landau-Boltzmann equation using variational methods. A general class of elastic quasiparticle-wall scattering laws is considered in deriving the impedance functional. We give exact results for the variational surface impedance in the low-frequency limit and discuss approximate results in context with special wall-scattering laws such as specular, backward and Andreev scattering. Finally we apply our theory to the experimentally accessible, pair-correlated Fermi liquid3He and particularly investigate the influence of pressure, temperature, frequency, and the parameters specifying the wall-scattering process on the shear impedance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Eisenstein, G. W. Swift, and R. E. Packard,Phys. Rev. Lett. 45, 1199 (1980).

    Google Scholar 

  2. G. Eska, K. Neumaier, W. Schoepe, K. Uhlig, and W. Wiedemann,Phys. Rev. 27, 5534 (1983).

    Google Scholar 

  3. A. W. Yanof and J. D. Reppy,Phys. Rev. Lett. 33, 631 (1974); T. Chainer, Y. Morii, and H. Kojima,Phys. Rev. B 21, 3941 (1980).

    Google Scholar 

  4. D. C. Carless, H. E. Hall, and J. R. Hook,J. Low Temp. Phys. 50, 605 (1983).

    Google Scholar 

  5. J. M. Parpia, D. J. Sandiford, J. E. Berthold, and J. D. Reppy,Phys. Rev. Lett. 40, 565 (1978); C. N. Archie, T. A. Alvesalo, J. D. Reppy, and R. C. Richardson,J. Low Temp. Phys. 42, 1076 (1980).

    Google Scholar 

  6. D. A. Ritchie, J. Saunders, and D. F. Brewer,Phys. Rev. Lett. 59, 465 (1987).

    Google Scholar 

  7. D. Einzel, H. Hojgaard Jensen, H. Smith, and P. Wölfle,J. Low Temp. Phys. 53, 695 (1983).

    Google Scholar 

  8. D. Einzel and J. M. Parpia,Phys. Rev. Lett. 58, 1937 (1987); W. Zhang and J. Kurkijärvi,J. Low Temp. Phys. 73, 483 (1988).

    Google Scholar 

  9. H. Hojgaard Jensen, H. Smith, P. Wölfle, K. Nagai, and T. Maack Bisgaard,J. Low Temp. Phys. 41, 473 (1980).

    Google Scholar 

  10. K. Nagai and P. Wölfle,J. Low Temp. Phys. 42, 227 (1981).

    Google Scholar 

  11. A. F. Andreev,Zh. Eksp. Teor. Fiz. 46, 1823 (1964) [Sov. Phys.-JETP 19, 1228 (1964)].

    Google Scholar 

  12. N. A. Greaves and A. J. Leggett,J. Phys. c 16, 4383 (1983); G. Kieselmann and D. Rainer,Z. Phys. B 52, 267 (1983).

    Google Scholar 

  13. J. Kurkijärvi and D. Rainer, inModern Problems in Condensed Matter Sciences, W. P. Halperin and L. P. Pitaevskii, eds. (Elsevier, Amsterdam), in press.

  14. I. L. Bekarevich and I. M. Khalatnikov,Zh. Eksp. Teor. Fiz. 39, 1699 (1966) [Sov. Phys.-JETP 12, 1187 (1961)].

    Google Scholar 

  15. M. J. Lea, K. J. Butcher, and R. E. Dobbs,Comm. Phys. 2, 59 (1977).

    Google Scholar 

  16. J. P. R. Bolton, inProceedings of the 14th International Conference on Low Temperature Physics Vol. 1 (Elsevier, New York, 1975), p. 115;J. Phys. C 9, L565 (1976).

    Google Scholar 

  17. I. A. Fomin,JETP Lett. 24, 77 (1976).

    Google Scholar 

  18. E. G. Flowers and R. W. Richardson,Phys. Rev. B 17, 1238 (1978).

    Google Scholar 

  19. K. Maki and H. Ebisawa,J. Low Temp. Phys. 26, 627 (1977).

    Google Scholar 

  20. H. Ebisawa,J. Phys. (Paris)39, C6–4 (1978).

    Google Scholar 

  21. K. Yoshida,Phys. Rev. 110, 769 (1958).

    Google Scholar 

  22. D. Einzel and P. Wölfle,J. Low Temp. Phys. 32, 19 (1978).

    Google Scholar 

  23. M. Liu and M. C. Cross,Phys. Rev. Lett. 41, 250 (1978); M. Liu, private communication.

    Google Scholar 

  24. D. Einzel,J. Low Temp. Phys. 54, 427 (1984).

    Google Scholar 

  25. A. A. Abrikosov and I. M. Khalatnikov,Sov. Phys.-JETP 6, 888 (1958).

    Google Scholar 

  26. J. Kurkijärvi, D. Rainer, and J. A. Sauls,Can. J. Phys. 65, 1440 (1989).

    Google Scholar 

  27. P. W. Retz and M. Lea,J. Phys. C 15, L207 (1982).

  28. D. S. Greywall,Phys. Rev. B 33, 7520 (1986).

    Google Scholar 

  29. B. N. Engel and G. G. Ihas,Phys. Rev. Lett. 55, 955 (1985).

    Google Scholar 

  30. J. C. Wheatley, inProgress in Low Temperature Physics, Vol. 7 (North Holland, Amsterdam, 1978), p. 1; J. R. Hook, Private communication.

    Google Scholar 

  31. D. Bloyet, E. Varoquaux, C. Vibet, O. Avenel, and P. M. Berglund,Phys. Rev. Lett. 42, 1158 (1979).

    Google Scholar 

  32. M. Pfitzner, Doctoral Thesis, Technische Universität, München (1984), unpublished.

  33. D. Einzel, P. Panzer, and M. Liu,Phys. Rev. 64, 2269 (1990).

    Google Scholar 

  34. F. P. Milliken, R. W. Richardson, and S. J. Williamson,Physica 108B, 1201 (1981).

    Google Scholar 

  35. P. R. Roach and J. B. Ketterson,Phys. Rev. Lett. 36, 736 (1976).

    Google Scholar 

  36. K. Uhlig, private communication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Einzel, D., Wölfle, P. & Hirschfeld, P.J. Transverse surface impedance of pair-correlated Fermi liquids. Application to normal and superfluid3He. J Low Temp Phys 80, 31–68 (1990). https://doi.org/10.1007/BF00683113

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00683113

Keywords

Navigation