Skip to main content
Log in

An ab initio study of an oxidative mechanism that forms nitric oxide from theN-hydroxyguanidinium ion

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The free-radical nitric oxide is now considered to play an important role in mammalian physiology and pathology. Enzymatic studies have shown that nitric oxide biosynthesis is initiated by an NADPH-dependentN-hydroxlation ofl-arginine, formingN ω-hydroxy-l-arginine as an intermediate. However, the subsequent enzymatic steps that generate nitric oxide fromN ω-hydroxy-l-arginine are unknown. We have used ab initio quantum chemical calculations to investigate a mechanism that forms nitric oxide fromN-hydroxyguanidine, used as a model forN ω-hydroxy-l-arginine. Our calculations indicate that mechanisms of nitric oxide formation involving nucleophilic attack by hydroperoxy anion at theN-hydroxyguanidine carbon are energetically feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Green, L. C.; De Luzuriage, K. R.; Wagner, D. A.; Rand, W.; Istfan, N.; Young, N.; Young, V. R.; Tannenbaum, S. R.Proc. Natl. Acad. Sci. U.S.A. 1981,78, 7764.

    Google Scholar 

  2. Ignarro, L.J. Ann. Rev. Pharmacol. Toxicol. 1990,30, 535.

    Google Scholar 

  3. Moncada, S.; Palmer, R. M. J.; Higgs, E. A.Biochem. Pharmacol. 1989,38, 1709.

    Google Scholar 

  4. Hibbs, J. B.; Taintor, R. R.; Vavrin, Z.; Granger, D. L.; Drapier, J. C.; Amber, I. J.; Lancaster, J. R. InNitric Oxide from L-Arginine: A Bioregulatory System; Mocada, S.; Higgs, E. A., Eds.; Elsevier: New York, 1990; pp 189–223.

    Google Scholar 

  5. Stuehr, D. J.; Griffith, O. W.Adv. Enzymol. 1992,65, 287.

    Google Scholar 

  6. Gibbs, J. B.; Taintor, R. R.; Vavrin, Z.; Rachlin, E. M.Biochem. Biophys. Res. Commun. 1988,157, 87.

    Google Scholar 

  7. Stuehr, D. J.; Nathan, C. F.J. Exp. Med. 1989,169, 1543.

    Google Scholar 

  8. Lepoivre, M.; Chenais, B.; Yapo, A.; Lemaire, G.; Thelander, L.; Tenu, J. P.J. Biol. Chem. 1990,265, 14143.

    Google Scholar 

  9. Curran, R. D.; Ferrari, F. K.; Kispert, P. H.; Stadler, J.; Stuehr, D. J.; Simmons, R. L.; Billiar, T. R.FASEB J. 1991,5(7), 2085.

    Google Scholar 

  10. Aisaka, K.; Gross, S. S.; Griffith, O. W.; Levi, R.Biochem. Biophys. Res. Commun. 1989,163, 710.

    Google Scholar 

  11. Rees, D. D.; Palmer, R. M. J.; Moncada, S.Proc. Natl. Acad. Sci. U.S.A. 1989,87, 3375.

    Google Scholar 

  12. Kilbourn, R. G.; Gross, S. S.; Jubran, A.; Adams, J.; Griffith, O. W.; Levi, R.; Lodato, R. F.Proc. Natl. Acad. Sci. U.S.A. 1990,87, 3629.

    Google Scholar 

  13. Radomski, M. W.; Palmer, R. M. J.; Moncada, S.Proc. Natl. Acad. Sci. U.S.A. 1990,87, 5183.

    Google Scholar 

  14. Garthwaite, J.; Charles, S. L.; Chess-Williams, R.Nature 1988,336, 385.

    Google Scholar 

  15. Bredt, D. S.; Snyder, S. H.Proc. Natl. Acad. Sci. U.S.A. 1990,87, 682.

    Google Scholar 

  16. Forsterman, U.; Pollock, J. S.; Schmidt, H. H. H. W.; Heller, M.; Murad, F.Proc. Natl. Acad. Sci. U.S.A. 1991,88(5), 1788.

    Google Scholar 

  17. Kwon, N.S.; Nathan, C. F.; Stuehr, D. J.J. Biol. Chem. 1989,264, 20496.

    Google Scholar 

  18. Tayeh, M. A.; Marietta, M. A.J. Biol. Chem. 1989,264, 19654.

    Google Scholar 

  19. Kwon, N. S.; Nathan, C. F.; Gilker, C.; Griffith, O. W.; Matthews, D. E.; Stuehr, D. J.J. Biol. Chem. 1990,265, 13442.

    Google Scholar 

  20. Palmer, R. M. J.; Rees, D. D.; Ashton, D. S.; Moncada, S.Biochem. Biophys. Res. Comm. 1988,153, 1251.

    Google Scholar 

  21. Palmer, R. M. J.; Ashton, D. S.; Moncada, S.Nature 1986,333, 664.

    Google Scholar 

  22. Stuehr, D. J.; Kwoon, N. S.; Nathan, C. F.; Griffith, O. W.; Feldman, P. L.; Wiseman, J.J. Biol. Chem. 1991,266(10), 6259.

    Google Scholar 

  23. Herzig, L., Massa, L. J., Santoro, A., Sapse, A. M.J. Org. Chem. 1981,46, 2330.

    Google Scholar 

  24. Sapse, A. M.; Herzig, L.; Snyder, G.Cancer Res. 1981,41, 1824.

    Google Scholar 

  25. Frisch, M. J.; Binkley, J. S.; Schlegel, H. B.; Raghavachari, K.; Melius, C. F.; Martin, R. L.; Stewart, J. J. P.; Bobrowicz, F. W.; Rohlfing, C. M.; Kahn, L. R.; Defrees, D. J.; Seeger, R.; Whiteside, R. A.; Fox, D. J.; Fleuder, E. M.; Pople, J. A., InGaussian 86; Carnegie-Mellon Quantum Chemistry Publishing Unit; Pittsburgh, PA, 1984.

    Google Scholar 

  26. Dix, T. A.; Kuhn, D. M.; Benkovic, S. J.Biochemistry 1987,26, 3354.

    Google Scholar 

  27. Arroyo, C. M.; Forray, C.; El Fakahany, E. E.; Rosen, G, M.Biochem. Biophys. Res. Comm. 1990,170, 1177.

    Google Scholar 

  28. Stolze, K.; Nohl, H.Free Radical Res. Comm. 1990,8, 123.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stuehr, D.J., Sapse, AM. & Sapse, D.S. An ab initio study of an oxidative mechanism that forms nitric oxide from theN-hydroxyguanidinium ion. Struct Chem 4, 143–147 (1993). https://doi.org/10.1007/BF00679340

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00679340

Key words

Navigation