Skip to main content
Log in

A biochemical approach to the electrogenic potassium pump of insect sensilla: Potassium sensitive ATPases in the labellum of the fly

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

A membrane bound, potassium sensitive ATPase which occurs in the proboscis ofProtophormia terraenovae (Diptera, Calliphoridae) is described. This ATPase activity is found only in the sensilla-rich labella but not in the haustella which contain few sensilla. Density gradient centrifugation shows that the enzyme is not of mitochondrial origin. It is insensitive to sodium azide, a specific inhibitor of mitochondrial ATPases, and has a relatively low affinity to potassium: half maximal activation is reached at approximately 70 mmol/l potassium.

It is suggested that the potassium activated ATPase in the labellum of the fly is an integral constituent of the electrogenic potassium pump, which may be important for the generation of receptor currents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

TEV :

transepithelial voltage

References

  • Booting SL, Simon KA, Hawkins NM (1961) Studies on sodium-potassium activated adenosinetriphosphatase. I. Quantitative distribution in several tissues of the cat. Arch Biochem Biophys 95:416–423

    Google Scholar 

  • Broyles JL, Hanson FE, Shapiro AM (1976) Ion dependence of the tarsal sugar receptor of the blowflyPhormia regina. J Insect Physiol 22:1587–1600

    Google Scholar 

  • Cereijo-Santaló R (1972) The effect of electrolytes on the 2,4-Dinitrophenol activated ATPase of rat liver mitochondria. Arch Biochem Biophys 148:22–26

    Google Scholar 

  • Cooperstein SJ, Lazarow A (1951) A microspectrophotometric method for the determination of cytochrome oxidase. J Biol Chem 189:665–670

    Google Scholar 

  • Gnatzy W, Weber KM (1978) Tormogen cell and receptorlymph space in insect olfactory sensilla. Fine structure and histochemical properties inCalliphora. Cell Tissue Res 189:549–554

    Google Scholar 

  • Harvey WR (1980) Water and ions in the gut. In: Locke M, Smith DS (eds) Insect biology in the future. Academic Press, New York, pp 105–124

    Google Scholar 

  • Harvey WR, Cioffi M, Wolfersberger MG (1981) Portasomes as coupling factors in active ion transport and oxidative phosphorylation. Am Zool 21:775–791

    Google Scholar 

  • Heidrich HG, Geiger R (1980) Kininogenase activity in plasma membranes and cell organelles from rabbit kidney cortex: Subcellular localization of renal kallikrein by free-flow electrophoresis and density-gradient fractionation. Kidney Int 18:77–85

    Google Scholar 

  • Kaissling KE, Thorson J (1980) Insect olfactory sensilla: structural, chemical and electrical aspects of the functional organization. In: Satelle DB et al. (eds) Receptors for neurotransmitters, hormones and pheromones in insects. Biomedical Press Elsevier/North-Holland, Amsterdam, pp 261–282

    Google Scholar 

  • Keynes RC (1973) Comparative aspects of transport through epithelia. In: Ussing HH, Thorn NA (eds) Transport mechanisms in epithelia. Munksgaard, Copenhagen, pp 505–511

    Google Scholar 

  • Langer H, Lues I, Rivera ME (1976) Arginine phosphate in compound eyes. J Comp Physiol 107:179–184

    Google Scholar 

  • Mandel LJ, Moffett DF, Jöbsis FF (1975) Redox state of respiratory chain enzymes and potassium transport in silkworm midgut. Biochim Biophys Acta 408:123–134

    Google Scholar 

  • Mandel LJ, Riddle TG, Storey JM (1980) Role of ATP in respiratory control and active transport in tobacco hornworm midgut. Am J Physiol 238 (Cell Physiol 7):C10-C14

    Google Scholar 

  • Morita H (1967) Effect of salts on the sugar receptor of the fleshfly. In: Hayashi T (ed) Proc II. int symp olfaction and taste. Pergamon Press, Oxford, pp 787–798

    Google Scholar 

  • Morita H (1972) Primary processes of insect chemoreception. In: Kotani M (ed) Advances in biophysics, vol 3. University of Tokyo Press, Tokyo, pp 161–198

    Google Scholar 

  • Morita H, Yamashita S (1966) Further studies on the receptor potential of chemoreceptors of the blowfly. Mem Fac Sci Kyushu Univ Ser E 4:83–93

    Google Scholar 

  • Muszbeck L, Szabó T, Fésüs L (1977) A highly sensitive method for the measurement of ATPase activity. Anal Biochem 77:286–288

    Google Scholar 

  • Pecher T (1980) Adenosin-Triphosphatasen in Sinnesepithelien von Insekten. Diplomarbeit, Universität Regensburg

  • Penefsky HS (1979) Mitochondrial ATPase. In: Meister A (ed) Advances in enzymology, vol 49. Wiley, New York, pp 224–288

    Google Scholar 

  • Popov N, Schmitt M, Schulzeck S, Matthies H (1975) Eine störungsfreie Mikromethode zur Bestimmung des Proteingehaltes in Gewebehomogenaten. Acta Biol Med Ger 34:1441–1446

    Google Scholar 

  • Rivera ME (1975) The ATPase system in the compound eye of the blowfly,Calliphora erythrocephala (Meig.). Comp Biochem Physiol 52 B:227–234

    Google Scholar 

  • Shiraishi A, Miyachi N (1976) The peripheral inhibition of the tarsal sugar receptor by sodium chloride in the proboscis extension response of the blowfly,Phormia regina M. J Comp Physiol 110:97–109

    Google Scholar 

  • Steck TL (1972) Membrane isolation. In: Fox CF, Keith AD (eds) Membrane molecular biology. Sinauer, Stanford, pp 76–114

    Google Scholar 

  • Thurm U (1972) The generation of receptor potentials in epithelial receptors. In: Schneider D (ed) Proc IV int symp olfaction and taste. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 95–101

    Google Scholar 

  • Thurm U (1974) Basics of the generation of receptor potentials in epidermal mechanoreceptors of insects. In: Schwartzkopff J (ed) Mechanoreception. Abh Rhein-Westf Akad Wiss, Opladen, pp 354–385

    Google Scholar 

  • Thurm U, Küppers J (1980) Epithelial physiology of insect sensilla. In: Locke M, Smith DS (eds) Insect biology in the future. Academic Press, New York, pp 735–764

    Google Scholar 

  • Thurm U, Wessel G (1979) Metabolism-dependent transepithelial potential differences at epidermal receptors of arthropods I. Comparative data. J Comp Physiol 134:119–130

    Google Scholar 

  • Wieczorek H (1976) The glycoside receptor of the larvae ofMamestra brassicae L. (Lepidoptera, Noctuidae). J Comp Physiol 106:153–176

    Google Scholar 

  • Wilczek M (1967) The distribution and neuroanatomy of the labellar sense organs of the blowflyPhormia regina Meigen. J Morphol 122:175–201

    Google Scholar 

  • Wolfersberger MG (1979) A potassium-modulated plasma membrane adenosine triphosphatase from the midgut ofManduca sexta larvae. Fed Proc 38:242

    Google Scholar 

  • Zerahn K (1971) Active transport of the alkali metals by isolated midgut ofHyalophora cecropia. Philos Trans R Soc Lond [Biol] 262:315–321

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Deutsche Forschungsgemeinschaft SFB 4/C4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wieczorek, H. A biochemical approach to the electrogenic potassium pump of insect sensilla: Potassium sensitive ATPases in the labellum of the fly. J. Comp. Physiol. 148, 303–311 (1982). https://doi.org/10.1007/BF00679015

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00679015

Keywords

Navigation