Skip to main content
Log in

The resonance energy of amides, the structure of aziridinone, and its relationship to other strained lactams

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The resonance energy of amides (lactams) is calculated both with and without inclusion of the inversion barrier of model amines. Inclusion of the barrier yields a larger resonance energy for amides than for esters, whereas the reverse is true if the barrier is not included. This is consistent with intuitive views related to electronegativity. The high inversion barrier in aziridine and a lower intrinsic resonance stabilization in aziridinone explain nonplanar geometry at nitrogen in alpha-lactams. A surprisingly good correlation is seen when one plots the difference in carbonyl frequencies of strained lactams (amides) and ketones versus the enthalpy differences between two olefin analogues to the corresponding lactam (amide) resonance contributors. This correlation implies the need to invoke resonance arguments to understand strained lactams. The deviation of aziridinone from the correlation is explicable in terms of its nonplanar structure and its deviation from planarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liebman, J. F.; Greenberg, A.Biophys. Chem.,1974,1, 222.

    Google Scholar 

  2. These values are put into the context of other acyl derivatives by George, P.; Bock, C. W.; Trachtman, M. InMolecular Structure and Energetics: Biophysical Aspects; Liebman, J. F.; Greenberg, A., Eds.; VCH Publishers: New York, 1988.

    Google Scholar 

  3. Standard gas-phase enthalpies of formation obtained from Pedley, J. B.; Naylor, R. D.; Kirby, S. P.Thermochemical Data of Organic Compounds, 2nd ed. Chapman and Hall: London, 1986.

    Google Scholar 

  4. The gas-phase enthalpy of formation forN,N-dimethylacetamide is obtained by combining the liquid-phase enthalpy of formation (see ref. [4]) with the recommended enthalpy of vaporization (Majer, V.; Svoboda, V.Vaporization of Organic Compounds; IUPAC Chemical Data Series, No. 32; Blackwell Scientific Publications: Boston, 1985.

    Google Scholar 

  5. Greenberg, A. InStructure and Reactivity. Liebman, J. F.; Greenberg, A., Eds.; VCH Publishers: New York, 1988.

    Google Scholar 

  6. Rauk, A.; Allen, L. C.; Mislow, K.Angew. Chem. Int. Ed. Engl.,1970,9, 400;

    Google Scholar 

  7. Lambert, J. B.Top. Stereochem.,1971,6, 19;

    Google Scholar 

  8. Dutler, R.; Rauk, A.; Sorensen, T. S.;J. Am. Chem. Soc.,1987,109, 6290.

    Google Scholar 

  9. Greene, F. D.; Stowell, J. C.; Bergmark, W. R.J. Org. Chem.,34, 2254.

  10. Wang, A. H.-J.; Paul, I. C.; Talaty, E. R.; Dupuy, A. E., Jr.J. Chem. Soc., Chem. Commun.,1972,43.

  11. Treschanke, L.; Rademacher, P.J. Mol. Struct. (Theochem.),1985,122, 35.

    Google Scholar 

  12. Thomas, T. D. Unpublished results, personal communication.

  13. Greenberg, A.; Liebman, J. F.Strained Organic Molecules. Academic Press: New York, 1978.

    Google Scholar 

  14. Woodward, R. B.; Neuberger, A.; Trenner, N. R.; InThe Chemistry of Penicillin. Clarke, H. T.; Johnson, J. R.; Robinson, R.; Eds.; Princeton University Press: 1949, pp. 415–439.

  15. Marstokk, K.-M.; Mollendal, H.; Samdal, S.; Uggerud, E.Acta Chem. Scand.,1989,43, 351.

    Google Scholar 

  16. Yang, Q.-C.; Seiler, P.; Dunitz, J. D.Acta Crystallogr., Sect. C,1987,43, 565.

    Google Scholar 

  17. Brown, H. C.; Tsukamoto, A.J. Am. Chem. Soc.,1961,83, 4549.

    Google Scholar 

  18. For a compilation containing results of thousands of ab initio molecular orbital calculations see Whiteside, R. A.; Frisch, M. J.; Pople, J. A.The Carnegie-Mellon Quantum Chemistry Archive; Carnegie-Mellon University, 3rd ed., Pittsburgh, PA,1983.

    Google Scholar 

  19. Fogarisi, G.; Pulay, P.; Torock, F.; Boggs, J. E.,J. Mol. Struct.,1979,57, 259

    Google Scholar 

  20. Boggs, J. E.; Niu, Z.J. Comput. Chem.,1985,6, 46.

    Google Scholar 

  21. Greenberg, A.; Liebman, J. F.J. Org. Chem.,1974,39, 123.

    Google Scholar 

  22. Rademacher, P.; Wurthwein, E.-U.J. Mol. Struct. (Theochem.),1986,139, 315.

    Google Scholar 

  23. Anet, F. A. L.; Osyang, J. M.J. Am. Chem. Soc.,1967,89, 352.

    Google Scholar 

  24. This is by analogy to the calculational finding that bicyclo[3.3.3]undec-1-ene is a “hyperstable” olefin; see Maier, W.-F.; Schleyer, P. v. R.J. Am. Chem. Soc.,1981,103, 1891; McEwen, A. B.; Schleyer, P. v. R.J. Am. Chem. Soc.,1986,108, 3951.

    Google Scholar 

  25. Wang, A. H.-J.; Missavage, R. J.; Byrn, S. R.; Paul, I. C.J. Am. Chem. Soc.,1972,94, 7100.

    Google Scholar 

  26. Wiberg, K. B.; Laidig, K. E.J. Am. Chem. Soc.,1987,109, 5935.

    Google Scholar 

  27. Breneman, C. M.; Wiberg, K. B.J. Comput. Chem.,1990,11, 361.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Paul von R. Schleyer on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenberg, A., Chiu, YY., Johnson, J.L. et al. The resonance energy of amides, the structure of aziridinone, and its relationship to other strained lactams. Struct Chem 2, 117–126) (1991). https://doi.org/10.1007/BF00676622

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00676622

Keywords

Navigation