Skip to main content
Log in

Abstract

We take the view that everything that is known about a physical system can be described by a “stochastic entity” (Å, Δ), which consists of a “manual” Å of experiments that can be performed on the system, and a set Δ of possible stochastic states (probability measures) on the logic of the manual. We next consider what happens when new information about the system is learned and describe precisely how one then obtains a new stochastic entity more elaborate than the first. Finally, we show that as information about the system continues to grow, the increasingly elaborate stochastic entities describing the system necessarily acquire mathematical properties often assumed for mathematical convenience in papers on quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cohen, Paul, (1966).Set Theory and the Continuum Hypothesis. W. A. Benjamin, New York.

  • Cohen, D. W., and Rüttimann, G. T. (to appear). On blocks in quantum logics, inRep. Math. Phys.

  • Drake, F. R. (1974).Set Theory, An Introduction to Large Cardinals. North-Holland, Amsterdam.

    Google Scholar 

  • Fischer, H., and Rüttimann, G. T. (1978a). Limits of manuals and logics, inMathematical Foundations of Quantum Theory, A. R. Marlow, ed., pp. 127–152. Academic Press, New York (1978a).

    Google Scholar 

  • Fischer, H., and Rüttimann, G. T. (1978b). The geometry of state space, inMathematical Foundations of Quantum Theory, A. R. Marlow, ed., pp. 153–176. Academic Press, New York.

    Google Scholar 

  • Fitting, M. C. (1969).Intuitionistic Model Theory and Forcing. North-Holland, Amsterdam.

    Google Scholar 

  • Foulis, D. J., Piron, C., and Randall, C. (1983). Realism, operationalism and quantum mechanics,Found. Phys. 13, 813–841.

    Google Scholar 

  • Foulis, D. J., and Randall, C. H. (1981a) Empirical logic and tensor products, inInterpretations and Foundations of Quantum Theory, H. Neumann, ed., pp. 9–20. B. I. Wissenschaftsverlag, Bibliographisches Inst., Mannheim.

    Google Scholar 

  • Foulis, D. J., and Randall, C. H. (1978). Manuals, Morphisms and Quantum Mechanics, inMathematical Foundations of Quantum Theory, A. Marlow, ed., pp. 105–126. Academic Press, New York.

    Google Scholar 

  • Foulis, D. J., and Randall, C. H. (1981b). What are quantum logics and what ought they be? inCurrent Issues in Quantum Logic, E. Beltrametti and B. Van Fraassen, eds., Plenum Press, New York.

    Google Scholar 

  • Kunen, K. (1980).Set Theory: An Introduction to Independence Proofs, North-Holland, Amsterdam.

    Google Scholar 

  • Ludwig, G. (1964). Versuch einer axiomatischen Grundlegung der Quanten Mekanik und allgemeinerer physikalischer Theorien,Z. Phys.,181, 233–260.

    Google Scholar 

  • Mielnik, B. (1968). Geometry of quantum states,Commun. Math. Phys.,9, 55–80.

    Google Scholar 

  • Randall, C., and Foulis, D. (1983). A mathematical language for quantum physics, inLes fondements de la mecanique quantique, C. Gruber, C. Piron, T. Tam, R. Weill, eds., d'Association Vaudoise des Chercheurs en Physique, Lausanne.

  • Rüttimann, G. T. (1984). Expectation functionals of observables and counters,Rep. Math. Phys. 21, 53–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, D.W., Henle, J. Ultimate stochastic entities. Int J Theor Phys 24, 329–341 (1985). https://doi.org/10.1007/BF00670801

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00670801

Keywords

Navigation