Skip to main content
Log in

Relation between impurities and oxide-scale growth mechanisms on Ni-34Cr and Ni-20Cr alloys. I. Influence of C, Mn, and Si

I. Influence of C, Mn, and Si

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation behavior of Ni-Cr alloys (34 and 20 wt.% Cr) was investigated between 850 and 1200°C in oxygen for a maximum duration of about 70 hr. The oxide-growth mechanism is a diffusion process controlled by either outward diffusion of chromium in Cr2O3 (Ni-34Cr alloy) or by an increase in grain size (Ni-20Cr alloy). In the case of the Ni-34Cr alloy, low values of chromium diffusion were found for the growth of Cr2O3 by taking into account the general equation of Wagner. The influence of impurities (Si, C, Mn, Ni) diffusing from the underlying alloy is analyzed because of their doping effect in the outer oxide scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Preparation et lutte contre la corrosion des matériaux dans l'atmosphère, XIème collogue du Cefracor Paris (1982).

  2. P. Mazars,Métaux Corrosion Industrie 686, 321 (1982).

    Google Scholar 

  3. P. Moulin, Thèse de docteur ingénieur, Université Paris Sud, Orsay (1978).

    Google Scholar 

  4. P. Moulin, A. M. Huntz, G. Beranger, and P. Lacombe,Scripta Met. 11, 533 (1978).

    Google Scholar 

  5. F. Armanet, P. Moulin, A. M. Huntz, A. Vejux, and G. Beranger,Mem. Sci. Rev. Met. 119 (1979).

  6. J. Nowotny, J. Oblakouski, A. Sadowski, and J. B. Wagner,Oxid. Met. 15, 191 (1981).

    Google Scholar 

  7. R. Lalauze and M. Soustelle,J. Chim Phys. 70, 1433 (1973).

    Google Scholar 

  8. E. Carl, Lowell,Oxid. Met. 7, 95 (1973).

    Google Scholar 

  9. P. Faure, Thèse de 3ème cycle présentée à l'Institut National Polytechnique de Toulouse (1979).

  10. D. L. Douglass and J. S. Armijo,Oxid. Met. 2, 207 (1970).

    Google Scholar 

  11. G. Roméo, W. W. Smeltzer, and J. S. Kirkaldy,La chemica e l'Industria,54, 28 (1972).

    Google Scholar 

  12. J. F. Nowak, M. Lambertin, and J. C. Colson,Corr. Sci. 18, 971 (1978).

    Google Scholar 

  13. P. Moulin, A. M. Huntz, and P. Lacombe,Acta Met. 27, 1431 (1979).

    Google Scholar 

  14. G. Ben Abderrazik, Thèse de doctorat d'État présentée à l'Université Paris XI, Orsay (1986).

  15. G. Moulin, M. Aucouturier, and P. Lacombe,J. Nucl Mat. 82, 347 (1979); G. Moulin, M. Aucouturier, and P. Lacombe,J. Mat. Sci. 15, 3025 (1980).

    Google Scholar 

  16. D. Briggs and M. P. Seah,Practical Surface Analysis (John Wiley & Sons, New York, 1983).

    Google Scholar 

  17. A. M. Huntz, D. Marchive, M. Aucouturier, and P. Lacombe,Int. J. Appl. Radio Isot. 24, 689 (1973).

    Google Scholar 

  18. J. P. Laurent and G. Lapasset,Int. J. Appl. Radio. Isot. 24, 213 (1973).

    Google Scholar 

  19. G. Moulin, J. Ovejero Garcia, C. Haut, M. Dadian, and M. Aucouturier,Rev. Met. 11, 627 (1978).

    Google Scholar 

  20. L. J. Matienzo, L. O. Yin, S. O. Grim, and W. E. Swar,Inorg. Chem. 12, 2764 (1973).

    Google Scholar 

  21. M. Barber, J. A. Connor, M. F. Guest, M. B. Hall, I. M. Hillier, and W. N. E. Meredith,J. Chem. Soc. Far. Dis. 54, 220 (1972).

    Google Scholar 

  22. G. C. Allen and P. M. Tucker,Inorg. Chim. Acta. 16, 41 (1976).

    Google Scholar 

  23. V. I. Nefedou, Y. A. V. Salyn, G. Leonnard, and T. R. Scheibe,J. Electr. Spectro. 10, 121 (1977).

    Google Scholar 

  24. B. Carrière, J. P. Deville, D. Brion, and J. Escard,J. Electr. Spectro. 10, 85 (1977).

    Google Scholar 

  25. A. Aoki,Japan. J. Appl. Phys. 15, 305 (1976).

    Google Scholar 

  26. D. F. Van de Vondel, L. Fwuyts, G. P. Vanderkelen, and L. Bevernage,J. Elect. Spectro. 10, 389 (1977).

    Google Scholar 

  27. M. O. Ku, K. Mirokawa, and S. Ikeda,J. Electr. Spectro. 7, 465 (1975).

    Google Scholar 

  28. J. C. Carver, G. K. Schweitzer, and T. A. Carlson,J. Chem. Phys. 57, 980 (1972).

    Google Scholar 

  29. T. E. Madey, C. D. Wagner, and A. Joshi,J. Electr. Spectro. 10, 359 (1977).

    Google Scholar 

  30. R. A. Rapp, Agard Conf. Proc. no. 120 on “High Temperature Corrosion of Aerospace Alloys” (1972), p. 147.

  31. W. C. Hagel,Trans. A.S.M. 56, 583 (1963).

    Google Scholar 

  32. W. C. Hagel and A. U. Seybolt,J. Electrochem. Soc. 108, 1146 (1961).

    Google Scholar 

  33. J. B. Wagner, Jr.,Electrochemical conductivity and diffusion, pp. 283–301.

  34. K. Hoshino and N. L. Peterson,J. Amer. Ceram. Soc. 66, C202 (1983).

    Google Scholar 

  35. K. A. Hay, F. G. Hichs, and D. R. Holmes,Werks. Korros. 21, 911 (1970).

    Google Scholar 

  36. P. Kofstad and K. P. Lillerud,Oxid. Met. 17, 195 (1982);Oxid. Met. 17, 127 (1982).

    Google Scholar 

  37. P. Hoch, Thèse de doctorat d'État à l'Université de Technologie de Compiègne (1981).

  38. C. Wagner, inAtom Movements (Amer. Soc. Met., Cleveland, 1951), p. 153.

    Google Scholar 

  39. A. Atkinson and R. I. Taylor, inProceedings of the Third International Conference on Transport in Nonstoichiometric Compounds (Pennsylvania State University, 1985).

  40. A. Atkinson,Rev. Mod. Phys. 57, 437 (1985).

    Google Scholar 

  41. D. H. Speidel and A. Muan,J. Am. Ceram. Soc. 49, 578 (1963).

    Google Scholar 

  42. P. Moulin, A. M. Huntz, and P. Lacombe,Acta Met. 28, 745 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abderrazik, G.B., Moulin, G. & Huntz, A.M. Relation between impurities and oxide-scale growth mechanisms on Ni-34Cr and Ni-20Cr alloys. I. Influence of C, Mn, and Si. Oxid Met 33, 191–235 (1990). https://doi.org/10.1007/BF00667415

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00667415

Key words

Navigation