Skip to main content
Log in

The growth of oxide platelets on nickel in pure oxygen. II. Surface analyses and growth mechanism

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The structural properties of NiO platelets emerging from a primary oxide layer by oxidation of pretreated nickels in pure oxygen between 650 and 800° C have been investigated in relation with the initial metallic layers and the primary oxide. Surface composition and segregation of impurities were also studied by X-ray photoelectron spectroscopy and Auger electron spectroscopy. Textural properties and structural orientation of both the primary oxide layer and the platelets were analyzed by X-ray diffraction and transmission electron microscopy. Platelets grew along {111} planes, leading to elliptical or semicircular bicrystals. The driving force for the present type of growth originates from the stresses accumulated in the thin, primary oxide layer. Impurities do not directly interact with this growth, but enable a specific grain structure to be developed thereby favoring platelet growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Morin, L. C. Dufour, and G. Trudel,Oxid. Met. 37, 39 (1992).

    Google Scholar 

  2. M. Humbert, C. Laruelle, and J. J. Heizmann,Mém. Scient. Rev. Mét.,29 (1984).

  3. L. G. Schulz,J. Appl. Phys. 20, 1030, 1033 (1949).

    Google Scholar 

  4. J. J. Heizmann, A. Vadon, D. Schlatter, and J. Bessières,Adv. X-Ray Anal. 32, 285 (1989).

    Google Scholar 

  5. J. Cazaux,Surface Sci. 140, 85 (1984).

    Google Scholar 

  6. K. Kurosawa, S. Saito, and S. Takemoto,Jpn. J. Appl. Phys. 11, 1230 (1972).

    Google Scholar 

  7. S. Saito, K. Kurosawa, and S. Takemoto,J. Crystal Growth 30, 113 (1975).

    Google Scholar 

  8. G. Remaut, A. Lagasse, and S. Amelinckx,Phys. Stat. Sol. 7, 497 (1964).

    Google Scholar 

  9. H. Schmid, M. Rühle, and N. L. Peterson, inSurfaces and Interfaces in Ceramic and Ceramic-Metal Systems, J. Pask and A. Evans, eds. (Plenum, New York, 1981), p. 177.

    Google Scholar 

  10. Hsun Hu,Texture 1, 233 (1974).

    Google Scholar 

  11. N. N. Khoi, W. W. Smeltzer, and J. D. Embury,J. Electrochem. Soc. 122, 1495 (1975).

    Google Scholar 

  12. D. Caplan, M. J. Graham, and M. Cohen,J. Electrochem. Soc. 119, 1205 (1972).

    Google Scholar 

  13. F. A. Elrefaie, A. Manolescu, and W. W. Smeltzer,J. Electrochem. Soc. 132, 2489 (1985).

    Google Scholar 

  14. J. Philibert,J. Microsc. Spectrosc. Electron. 5, 499 (1980).

    Google Scholar 

  15. G. Shimakoa, H. Takaishi, and E. Nii,J. Jpn. Inst. Met. 29, 321 (1965).

    Google Scholar 

  16. J. S. Sears,J. Mater. Sci. 13, 2455 (1978).

    Google Scholar 

  17. R. M. Fisher, L. S. Darken, and K. G. Carroll,Acta Met. 2, 368 (1954).

    Google Scholar 

  18. W. Jaenicke, S. Leistikow, A. Stadler, and L. Albert,Mém. Scient. Rev. Mét. 52, 231 (1965).

    Google Scholar 

  19. R. Takagi,J. Phys. Soc. Jpn. 12, 1212 (1957).

    Google Scholar 

  20. G. Pfefferkorn and J. Vahl,Mém. Scient. Rev. Met. 52, 223 (1965).

    Google Scholar 

  21. H. Fischmeister,Mém. Scient. Rev. Mét. 52, 223 (1965).

    Google Scholar 

  22. E. A. Gulbransen,Mém. Scient. Rev. Mét. 52, 253 (1965).

    Google Scholar 

  23. D. A. Voss, E. P. Butler, and T. E. Mitchell,Met. Trans. A 13A, 929 (1982).

    Google Scholar 

  24. R. A. Rapp,Met. Trans. A 15A, 765 (1984).

    Google Scholar 

  25. F. Morin,J. Mater. Sci. Lett. 2, 383 (1983).

    Google Scholar 

  26. J. C. Pivin, J. Morvan, D. Mairey, and J. Mignot,Scripta Metall. 17, 179 (1983).

    Google Scholar 

  27. A. Aubry, F. Armanet, G. Béranger, J. L. Lebrun, and G. Maeder,Acta Metall. 36, 2779 (1988).

    Google Scholar 

  28. A. N. Fitch, C. R. A. Catlow, and A. Atkinson,J. Mater. Sci. 26, 2300 (1991).

    Google Scholar 

  29. M. Déchamps, J. Bernardini, F. Moya, and F. Barbier,J. Chim. Phys. 84, 163 (1987).

    Google Scholar 

  30. M. Déchamps and F. Barbier, inNon-Stoichiometric Compounds: Surfaces, Grain Boundaries and Structural Defects, J. Nowotny and W. Weppner, eds. (Kluwer Academic Publishers, Dordrecht, 1989), p. 221.

    Google Scholar 

  31. A. Atkinson, R. I. Taylor, and A. E. Hughes,Phil. Mag. 45, 823 (1982).

    Google Scholar 

  32. A. W. Harris and A. Atkinson,Oxid. Met. 34, 229 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dufour, L.C., Morin, F. The growth of oxide platelets on nickel in pure oxygen. II. Surface analyses and growth mechanism. Oxid Met 39, 137–154 (1993). https://doi.org/10.1007/BF00666614

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00666614

Key Words

Navigation