Oxidation of Metals

, Volume 31, Issue 5–6, pp 393–414 | Cite as

Thermodynamics of the Na2SO4-K2SO4-CoSO4 system and their relevance to low-temperature hot corrosion

  • Oliver H. LeBlancJr.
  • Krishan L. Luthra
  • Roger W. Haskell
Article

Abstract

Thermodynamic calculations and experiments were performed to determine the SO3 partial pressures and temperatures at which K2SO4-CoSO4 binary mixed liquid phases form on CoO and Co3O4 in the presence of K2SO4. The calculations and experiments are in excellent agreement. Similar calculations were also made of the compositions at the liquidus surface and the associated SO3 partial pressures for the K2SO4-Na2SO4-CoSO4 ternary system. These calculations show that the presence of K2SO4 substantially reduces the SO3 partial pressures required to stabilize a liquid salt phase on the surface of oxidized cobalt alloys at 600–800°C. Consequently, at these temperatures the hot corrosion in coal-fired systems, where K levels are high, is expected to be worse than in oil-fired systems, where K levels are low. This prediction was confirmed by experiments in a pressurized fluidized bed coal combustor and in an atmospheric pressure burner rig.

Key words

low-temperature hot corrosion K2SO4-Na2SO4-CoSO4 system SO3 partial pressure cobalt alloys 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. S. Spacil and K. L. Luthra,J. Electrochem. Soc. 129, 2119 (1982).Google Scholar
  2. 2.
    R. W. Haskell, H. von E. Doering, and D. F. Grzybowski, inStationary Gas Turbine Alternate Fuels, ASTMSTP 809, J. S. Clark and S. M. DeCorso, eds. (American Society for Testing and Materials, Philadelphia, 1983), p. 156.Google Scholar
  3. 3.
    R. L. McCarron and R. P. Brobst,Mat. Performance 24, 32 (1985).Google Scholar
  4. 4.
    K. L. Luthra and D. A. Shores,J. Electrochem. Soc. 127, 2202 (1980).Google Scholar
  5. 5.
    K. L. Luthra,Met. Trans. 13A, 1843, 1853 (1982).Google Scholar
  6. 6.
    R. L. Jones, inHigh Temperature Corrosion, R. A. Rapp, ed.,NACE-6 (National Association of Corrosion Engineers, Houston, 1983, p. 513.Google Scholar
  7. 7.
    S. Y. Hwang, G. H. Meir, F. S. Pettit, G. R. Johnson, V. Provenzano, and F. A. Smidt, inHigh Temperature Protective Coatings, S. C. Singhal, ed. (The Metallurgical Society of AIME, New York, 1982, p. 121.Google Scholar
  8. 8.
    G. Calcagni and D. Marotta,Gaz. Chem. Ital. 43, 380 (1914).Google Scholar
  9. 9.
    K. P. Lilleurd and P. Kofstad,Oxid. Met. 21, 223 (1984).Google Scholar
  10. 10.
    O. H. LeBlanc and D. A. Shores, Extended Abstracts,Fall Meeting of the Electrochemical Society, Montreal, October 1982, Vol. 82-1 (Electrochemical Society, Pennington, New Jersey, 1982), abstact 254.Google Scholar
  11. 11.
    A. K. Misra, D. P. Whittle, and W. L. Worrell,J. Electrochem. Soc. 129, 1840 (1982).Google Scholar
  12. 12.
    JANAF Thermochemical Tables, The Dow Chemical Company, Midland, Michigan 1971; suppl. 1974; suppl. 1975; suppl. 1978; suppl. 1982.Google Scholar
  13. 13.
    H. K. Hardy,Acta Met. 1, 202 (1953).Google Scholar
  14. 14.
    T. Forland,J. Phys. Chem. 59, 152 (1955).Google Scholar
  15. 15.
    M. Temkin,Acta Physiochem USSR 20, 411 (1945).Google Scholar
  16. 16.
    M. Blander,Molten Salt Chemistry (Wiley-Interscience, New York, 1964), p. 127.Google Scholar
  17. 17.
    C. W. Bale and A. D. Pelton,CALPHAD 6, 255 (1982).Google Scholar
  18. 18.
    A. D. Pelton, C. W. Bale, and P. L. Lin,Can. J. Chem. 62, 457 (1984).Google Scholar
  19. 19.
    K. A. Bol'shakov and P. I. Fedorov,Zh. Obsch. Khim. 26, 367 (1956).Google Scholar
  20. 20.
    C. Perrier and A. Bellanca,Periodico Mineral. (Rome) 11, 163 (1940).Google Scholar
  21. 21.
    T. Ostvold and O. J. Kleppa,Acta Chem. Scand. 25, 919 (1971).Google Scholar
  22. 22.
    G. W. Toop,Trans. Met. Soc. AIME 33, 850 (1965).Google Scholar
  23. 23.
    R. W. Haskell, H. von E. Doering, O. H. LeBlanc, and K. L. Luthra,A Mechanistic Study of Low-Temperature Corrosion on Materials in the Coal Combustion Environment, Final Report Prepared by General Electric Company, Schenectady, New York 12301 under Subconstract No. 86X-00224C for Oak Ridge National Laboratory under U.S. Department of Energy Contract No. DE-AC05-840R21400. Report available from NTIS.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Oliver H. LeBlancJr.
    • 1
  • Krishan L. Luthra
    • 1
  • Roger W. Haskell
    • 2
  1. 1.Corporate Research and DevelopmentGeneral Electric CompanySchenectady
  2. 2.Gas Turbine Engineering DepartmentGeneral Electric CompanySchenectady

Personalised recommendations