Skip to main content
Log in

Deformation behavior of oriented UHMW-PE fibers

  • Original Contributions
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The mechanical behavior of gel-spun, ultra-drawn, UHMW-PE fibers was investigated as a function of temperature, stress, and time under static and dynamic loading conditions. From a phenomenological point of view, two separate contributions to the deformation behavior could be distinguished, i.e., a reversible (viscoelastic) contribution and an irreversible plastic flow component. It was investigated whether or not this distinction can be rationalized on a molecular basis. The fibers were studied using static (creep) and dynamic mechanical analysis (DMA), dilatometry, and wide-angle x-ray scattering (WAXS). The results of the combined experimental observations are discussed in an attempt to relate the deformation behavior of highly oriented PE fibers to events occurring on a molecular scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barham PJ, Keller A (1985) J Mat Sci 20:2281

    Google Scholar 

  2. Ward IM (1985) Adv Polym Sci 70:1

    Google Scholar 

  3. Lemstra PJ, Kirschbaum R, Ohta T, Yasuda H (1987) in: Developments in Oriented Polymers 2. Ward IM (ed) Elsevier Appl Sci Publ, New York, Chapter 2

    Google Scholar 

  4. Lemstra PJ, van Aerle NAJM, Bastiaansen CWM (1987) Polym J 19:85–98

    Google Scholar 

  5. Wilding MA, Ward IM (1978) Polymer 19:969–976

    Google Scholar 

  6. Wilding MA, Ward IM (1981) Polymer 22:870–876

    Google Scholar 

  7. Wilding MA, Ward IM (1984) J Polym Sci, Polym Phys Ed 22:561–575

    Google Scholar 

  8. Govaert LE (1990) PhD-Thesis Eindhoven University of Technology

  9. Irvine PA, Smith P (1986) Macromolecules 19:240–242

    Google Scholar 

  10. Anandakumaran K, Roy SK, St. John Manley R (1988) Macromol 21:1746

    Google Scholar 

  11. Deckmann H, Govaert LE, Möller M, Lemstra PJ (1991) in: Integration of Polymer Science and Technology Part 5:276–290, Elseviers Appl Sci Publ

    Google Scholar 

  12. Ciferri A, Ward IM (eds) (1979) Ultra-High Modulus Polymers. Appl Sci Publ England

  13. Sherby OD, Dorn JE (1958) J Mech Phys Solids 6:145–162

    Google Scholar 

  14. Dent Glasser LS (1977) Crystallography and its applications. Van Nostrand Reinhold Company, pp 142

  15. Wilson PS, Simha R (1973) Macromol 6:902–908

    Google Scholar 

  16. Carnazzi P (1903) Nuovo Cimento 5:180

    Google Scholar 

  17. Northolt MG, Roos A, Kampschreur JH (1989) J Polym Sci, Polym Phys Ed 27:1107–1120

    Google Scholar 

  18. Leblans PJR, Bastiaansen CWM, Govaert LE (1989) J Polym Sci, Polym Phys Ed 27:1009–1016

    Google Scholar 

  19. Capaccio G, Ward IM (1982) Colloid Polym Sci 260:46–55

    Google Scholar 

  20. Decandia F, Vittoria V, Peterlin A (1985) J Polym Sci, Polym Phys Ed 23:1217

    Google Scholar 

  21. Smook J (1984) PhD Thesis University of Groningen

  22. Khanna YP, Wenner WM, Kumar R, Kavesh S (1989) J Appl Polym Sci 38:571–578

    Google Scholar 

  23. Noid DW, Sumpter BG, Wunderlich B (1990) Macromol 23:664

    Google Scholar 

  24. Mansfield M, Boyd RH (1978) J Polym Sci, Polym Phys Ed 16:1227–1252

    Google Scholar 

  25. Olf HG, Peterlin A (1970) J Polym Sci A-2 8:753

    Google Scholar 

  26. Olf HG, Peterlin A (1970) J Polym Sci A-2 8:771

    Google Scholar 

  27. Opella SJ, Waugh JS (1977) J Chem Phys 66:4919

    Google Scholar 

  28. Reneker DH, Mazur J (1982) Polymer 23:401

    Google Scholar 

  29. Ewen B, Strobl TR, Richter D (1980) Faraday Discussuens Chem Soc 69:19

    Google Scholar 

  30. Boyd RH (1985) Polymer 26:323–347

    Google Scholar 

  31. Boyd RH (1985) Polymer 26:1123–1133

    Google Scholar 

  32. Nakayasu H, Markovitz H, Plazek DJ (1961) Trans Soc Rheol 5:261–283

    Google Scholar 

  33. Kawai H, Hashimoto T, Suehiro S, Fujita K (1984) Polym Eng Sci 24:361

    Google Scholar 

  34. Ribes Greus A, Diaz Calleja R (1989) J Appl Polym Sci 37:2549–2562

    Google Scholar 

  35. Meier DJ (ed) (1978) Molecular Basis of Transitions and Relaxations. Midland Macromolecular Institute Monographs, No. 4

  36. Matsuo M, Sawatari C, Ohhata T (1988) Macromol 21:1317–1324

    Google Scholar 

  37. Roy SK, Kyu T, St. John Manley R (1988) Macromol 21:1741–1746

    Google Scholar 

  38. van Aerle NAJM, Braam CWM (1988) J Mater Sci 23:4429

    Google Scholar 

  39. Kunz M (1990) PhD-Thesis University of Freiburg

  40. Sadler DM, Barham PJ (1990) Polymer 31:36–42

    Google Scholar 

  41. Sadler DM, Barham PJ (1990) Polymer 31:43–45

    Google Scholar 

  42. Sadler DM, Barham PJ (1990) Polymer 31:46–50

    Google Scholar 

  43. Stein D (1990) Private Communications

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Govaert, L.E., Lemstra, P.J. Deformation behavior of oriented UHMW-PE fibers. Colloid Polym Sci 270, 455–464 (1992). https://doi.org/10.1007/BF00665989

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00665989

Key words

Navigation