Skip to main content
Log in

Synthesis and X-ray structural analysis of a unique Co-crystallization complex of [NaSal]2DB24C8 and [KSal]2DB24C8

  • Published:
Journal of inclusion phenomena Aims and scope Submit manuscript

Abstract

Sodium salicylate (NaSal where Sal=2-hydroxybenzoate), when mixed with dibenzo-24-crown-8 (DB24C8) yields a bimetallic complex [NaSal]2DB24C8 in most polar organic media, while potassium salicylate (KSal) under similar conditions shows a tendency to yield 1∶1 or 2∶1 complexes depending upon medium or synthesis. However, the presence of both NaSal and KSal together results in a unique mixed cation complex of composition NaKSal2DB24C8. This product melts sharply (190-92°C) without decomposition, displays IR spectral characteristics comparable to those of [Na(Sal)]2DB24C8, and is stable in aqueous media as shown by the detectable cation effect on the UV absorption bands of Sal and DB24C8. Single crystal X-ray analysis of NaK(Sal)2DB24C8 reveals that the system represents a co-crystallization complex of individual (KSal)2DB24C8 and (NaSal)2DB24C8 molecules. The crystals are monoclinic,P21/c,a=19.976(2) Å,b=9.031(1) Å,c=25.541(5) Å,β=122.065(9)°, Å3,T=298 K,Z=2+2, CuKα λ=1.5418 Å, and 2θ (2.5°–100°). FinalR factor for the 3012 observed reflections (F>3σ) is 0.092. Both the Na2- and K2-molecules possess crystallographic centers of symmetry with one metal and its associated anion on each side of the crown ring. However, the conformations of the crowns are very different in the two molecules, with the K2-crown being nearly planar and the Na2-crown being quite puckered. Four oxygen atoms from the DB24C8 (K⋯O, 2.680–2.908 Å) and three carboxyl oxygen atoms (K⋯O, 2.472–2.708 Å) from separate salicylate ions coordinate with each potassium. Three oxygens from the crown (Na⋯O, 2.536–2.65 Å) and three carboxyl oxygens (Na⋯O, 2.31–2.563 Å) coordinate with each sodium. The salicylate ions lie on opposite sides and nearly perpendicular (77.2°, Na2-molecule; 82.7° K2-molecule) to each crown but coordinate to both of the metal ions within a molecule. The K+⋯K+ and Na+⋯Na+ distances in the respective molecules are 3.95 and 3.34 Å.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Sutcliffe: inMineral Salts Absorption in Plants, Vol. 1 (International Series of Monographs on Pure and Applied Biology, Eds. P. F. Wareing, and A. W. Galston), pp. 57. Pergamon Press: Great Britain (1962).

    Google Scholar 

  2. K. L. Webb:Plant Soil 24, 261 (1966).

    Google Scholar 

  3. M. C. Williams:Plant Physiol. 35, 500 (1960).

    Google Scholar 

  4. N. S. Poonia:Curr. Sci. 50, 881 (1981).

    Google Scholar 

  5. N. S. Poonia, P. Bagdi, and K. S. Sidhu:J. Incl. Phenom. 4, 43 (1986).

    Google Scholar 

  6. N. S. Poonia and M. R. Truter: J. Chem. Soc., Dalton Trans. 2062 (1973).

  7. N. S. Poonia:J. Am. Chem. Soc. 96, 1012 (1974).

    Google Scholar 

  8. N. S. Poonia:Inorg. Chim. Acta 23, 5 (1977).

    Google Scholar 

  9. N. S. Poonia, G. C. Kumar, A. Jayakumar, P. Bagdi, and A. V. Bajaj:J. Inorg. Nucl. Chem. 43, 2159 (1981).

    Google Scholar 

  10. N. S. Poonia, A. K. Arora, and A. V. Bajaj:J. Inorg. Nucl. Chem. 43, 2165 (1981).

    Google Scholar 

  11. P. Main, S. E. Hull, L. Lessinger, G. Germain, J. P. Declercq, and M. M. Woolfson:Multan 78, A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data, Univs. of York, England and Louvain, Belgium.

  12. C. J. Pedersen:J. Am. Chem. Soc. 89, 7017 (1967).

    Google Scholar 

  13. F. Vratny, C. N. R. Rao, and M. Dilling:Anal. Chem. 33, 1455 (1961).

    Google Scholar 

  14. N. S. Poonia and A. V. Bajaj:Chem. Rev. 79, 389 (1979).

    Google Scholar 

  15. D. L. Hughes:J. Chem. Soc., Dalton Trans. 2374 (1975).

  16. D. E. Fenton, M. Mercer, N. S. Poonia, and M. R. Truter:Chem. Comm. 66 (1972).

  17. M. Mercer and M. R. Truter:J. Chem. Soc., Dalton Trans. 2469 (1973).

  18. A. Enders-Beumer and S. Harkema:Acta Crystallogr., Sect. B29, 682 (1973).

    Google Scholar 

  19. G. de With, S. Harkema, and G. J. van Hummel:Acta Crystallogr., Sect. B32, 1980 (1976).

    Google Scholar 

  20. P. D. Cradwick and N. S. Poonia:Acta Crystallogr., Sect. B33, 197 (1977).

    Google Scholar 

  21. J. L. Galigne:Acta Crystallogr. 27, 2429 (1971).

    Google Scholar 

  22. D. Hughes:J. Chem. Soc., Dalton Trans. 6036 (1971).

  23. R. J. Williams:Quart. Rev. Chem. Soc. 24, 331 (1970).

    Google Scholar 

  24. N. S. Poonia:J. Sci. Ind. Res. 36, 268 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supplementary Data relating to this article are deposited with the British Library as Supplementary Publication No. SUP 82044 (18 pages).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Momany, C., Hackert, M.L., Sharma, J. et al. Synthesis and X-ray structural analysis of a unique Co-crystallization complex of [NaSal]2DB24C8 and [KSal]2DB24C8. Journal of Inclusion Phenomena 5, 343–354 (1987). https://doi.org/10.1007/BF00665367

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00665367

Key words

Navigation