Skip to main content
Log in

The reactive element effect on the growth rate of nickel oxide scales at high temperature

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The restriction of oxide-scale growth by an incorporated reactive element has been investigated for the oxidation at 900°C of CeO2-coated and Ce-alloyed Ni. Analytical electron microscopy of scales in transverse section revealed that significant inhibition of diffusion along a network of grain-boundary pathways in NiO was associated with segregation of Ce at a high concentration. The development of this form of Ce distribution depended critically on the provision of sufficiently small and closely spaced CeO2 source particles within the scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Atkinson,Rev. Mod. Phys. 57, 437 (1985).

    Google Scholar 

  2. F. H. Stott,Rep. Prog. Phys. 50, 861 (1987).

    Google Scholar 

  3. A. Atkinson, R. I. Taylor, and A. E. Hughes,Philos. Mag. A 45, 823 (1982).

    Google Scholar 

  4. A. Atkinson, F. C. W. Pummery, and C. Monty, InTransport in Non-Stoichiometric Compounds, G. Simkovich and V. S. Stubican, eds. (Plenum Press, New York, 1985), p. 359.

    Google Scholar 

  5. A. A. Moosa and S. J. Rothman,Oxid. Met. 24, 133 (1985).

    Google Scholar 

  6. J. C. Pivin,Proceedings of the Ninth International Congress on Metallic Corrosion 4, 10 (1984).

    Google Scholar 

  7. A. T. Chadwick and R. I. Taylor,Proceedings of the Ninth International Congress on Metallic Corrosion 3, 381 (1984).

    Google Scholar 

  8. D. M. Duffy and P. W. Tasker,J. Phys. (Paris) C-4, 185 (1985).

    Google Scholar 

  9. D. M. Duffy and P. W. Tasker,Phil. Mag. A 54, 759 (1986).

    Google Scholar 

  10. A. T. Chadwick, UKAEA Report No. AERE-R10352 (Harwell Laboratory, Oxfordshire, U.K., 1982).

    Google Scholar 

  11. A. T. Chadwick and R. I. Taylor,Solid State Ionics 12, 343 (1984).

    Google Scholar 

  12. A. T. Chadwick and R. I. Taylor,J. Microsc. 140, 221 (1985).

    Google Scholar 

  13. D. P. Moon, (D.Phil. thesis, Oxford University, 1987).

  14. A. Atkinson and R. I. Taylor,J. Phys. Chem. Solids 47, 315 (1986).

    Google Scholar 

  15. P. W. Tasker, UKAEA Report No. AERE-M3292 (Harwell Laboratory, Oxfordshire, U.K., 1983).

    Google Scholar 

  16. J. Stringer, B. A. Wilcox, and R. I. Jaffee,Oxid. Met. 5, 11 (1972).

    Google Scholar 

  17. J. A. Desport, P. T. Moseley, and D. E. Williams.J. Mater. Sci. Lett. 1, 288 (1982).

    Google Scholar 

  18. D. P. Moon,Surf. Interface Anal. 12, 27 (1988).

    Google Scholar 

  19. A. A. Moosa, S. J. Rothman, and L. J. Nowicki,Oxid. Met. 24, 115 (1985).

    Google Scholar 

  20. A. Atkinson, D. W. Smart, and R. I. Taylor,Werkst. Korros. 38, 704 (1987).

    Google Scholar 

  21. M. R. Notis, B. Bender, and D. B. Williams, InAdvances in Ceramics, L. M. Levinson, ed., Vol. 1 (The American Ceramic Society, Columbus, Ohio, 1981), p. 91.

    Google Scholar 

  22. A. Atkinson, D. P. Moon, D. W. Smart, and R. I. Taylor,J. Mater. Sci. 21, 1747 (1986).

    Google Scholar 

  23. R. I. Taylor, unpublished result (1985).

  24. C. H. Chen, M. R. Notis, and D. B. Williams,J. Am. Ceram. Soc. 66, 566 (1983).

    Google Scholar 

  25. A. Atkinson and R. I. Taylor, InTransport in Non-Stoichiometric Compounds, G. Simkovich and V. S. Stubican, eds. (Plenum Press, New York, 1985), p. 285.

    Google Scholar 

  26. E. W. A. Young (Ph.D. thesis, University of Utrecht, 1986).

  27. E. W. A. Young and J. H. W. de Wit,Solid State Ionics 16, 39 (1985).

    Google Scholar 

  28. G. Ben Abderrazik, G. Moulin, A. M. Huntz, E. W. A. Young, and J. H. W. de Wit,Solid State Ionics 22, 285 (1987).

    Google Scholar 

  29. A. M. Huntz,Mater. Sci. Eng. 87, 251 (1987).

    Google Scholar 

  30. D. P. Whittle and J. Stringer,Phil. Trans. R. Soc. Lond. A 295, 309 (1980).

    Google Scholar 

  31. F. A. Golightly, F. H. Stott, and G. C. Wood,Oxid. Met. 10, 163 (1976).

    Google Scholar 

  32. C. M. Cotell, G. J. Yurek, R. J. Hussey, D. F. Mitchell, and M. J. Graham,J. Electrochem. Soc. 134, 1871 (1987).

    Google Scholar 

  33. G. J. Yurek, K. Przybylski, and A. J. Garratt-Reed,J. Electrochem. Soc. 134, 2643 (1987).

    Google Scholar 

  34. M. J. Bennett, J. A. Desport, M. R. Houlton, P. A. Labun, and J. T. Titchmarsh,Mater. Sci. Technol.,4, 1107 (1988).

    Google Scholar 

  35. C. H. Yang, G. E. Welsch and T. E. Mitchell,Mater. Sci. Eng. 69, 351 (1985).

    Google Scholar 

  36. H. E. Evans and R. C. Lobb,Proceedings of the Ninth International Congress on Metallic Corrosion 2, 46 (1984).

    Google Scholar 

  37. T. A. Ramanarayanan, M. Raghavan and R. Petkovic-Luton,Oxid. Met. 22, 83 (1984).

    Google Scholar 

  38. A. W. Funkenbusch, J. G. Smeggil, and N. S. Bornstein,Metall. Trans. A 16, 1164 (1985).

    Google Scholar 

  39. M. J. Bennett, H. E. Bishop, P. R. Chalker, and A. T. Tuson,Mater. Sci. Eng. 90, 177 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon, D.P. The reactive element effect on the growth rate of nickel oxide scales at high temperature. Oxid Met 32, 47–66 (1989). https://doi.org/10.1007/BF00665268

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00665268

Key words

Navigation