Skip to main content
Log in

Oxidation behavior of 2.25Cr-1Mo steel with prior tempering at different temperatures

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation behavior of a normalized 2.25Cr-1Mo steel tempered previously for 10 hr at different temperatures between 873 and 1023 K has been studied up to a maximum duration of 1000 hr in air at 773–973 K. The oxidation resistance of the steel was found to decrease significantly with the temperature of tempering. Tempering of this steel is reported to cause microstructural changes involving precipitation of Cr as carbides and a decrease in the effective (free) Cr contents, that could influence the oxidation resistance of the Cr-containing alloys. Relative compositions across the thickness of the oxide scales, as analyzed by SEM/EDX and SIMS, suggest that a less Cr-rich (and less protective) and thicker scale on the steel formed because previous tempering caused extensive depletion of free Cr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Application of 2.25Cr-1Mo steel for thick-walled pressure vessel,ASTM STP 755 (1982).

  2. Proc. BNES International Conf. Ferritic Steels for Fast Reactor Steam Generators, London, 1978.

  3. B. J. Cane and R. S. Fidler, Proc. BNES International Conf. Ferritic Steels for Fast Reactor Steam Generators, London, 1978, p. 193.

  4. R. G. Baker and J. Nutting,JISI 192, 257 (1959).

    Google Scholar 

  5. K. Laha, K. B. S. Rao, and S. L. Mannan,Mater. Sci. Engng. A129, 183 (1990).

    Google Scholar 

  6. J. Leitnaker, R. L. Klueh, and W. R. Laing,Met. Trans. A 6A, 1949 (1975).

    Google Scholar 

  7. M. Murphy and G. Branch,JISI 209, 546 (1971).

    Google Scholar 

  8. J. Orr and F. R. Beckitt, in Proc. BNES International Conf. Ferritic Steels for Fast-Reactor Steam Generators, London, S. F. Pugh and E. A. Little, eds. (1978), p. 91.

  9. J. Pilling and N. Ridley,Metall. Trans. A.13A, 557 (1982).

    Google Scholar 

  10. R. K. Singh Raman, and J. B. Gnanamoorthy,J. Mater. Sci. 27, 3435 (1992).

    Google Scholar 

  11. R. L. Klueh and J. F. King,Welding J.—Res. Suppl. 302s (1982).

  12. R. K. Singh Raman, A. S. Khanna, B. K. Choudhary, and J. B. Gnanamoorthy,Mater. Sci. Engng. A148, 299 (1991).

    Google Scholar 

  13. N. J. Simms and J. A. Little,Oxid. Met. 27, 283 (1987).

    Google Scholar 

  14. N. J. Cory and T. M. Horrington,Oxid Met. 27, 237 (1987).

    Google Scholar 

  15. P. Roy and T. Lauritzen,Welding J.—Res. Suppl. 6, 45s (1984).

    Google Scholar 

  16. R. K. Singh Raman and J. B. Gnanamoorthy,Corros, Sci. (in press).

  17. C. S. Lundin, S. C. Kelly, R. Menon, and B. J. Kruse, Stress-rupture behaviour of post-weld heat-treated 2.25Cr-1Mo steel weld metal,Welding Res. Council Bull. 315, 1–66 (1984).

    Google Scholar 

  18. R. K. Singh Raman, A. S. Khanna, and J. B. Gnanamoorthy, in Proc. Microscopy of Oxidation, Cambridge, M. J. Bennett and G. W. Lorimer, eds. (March 1990), p. 28.

  19. Y. Shida, N. Ohtsunaka, J. Maruyama, N. Fujino, and H. Fujikawa, Proc. JIMS-3,High-Temp. Corros., Trans. Jpn. Inst. Met. 63, 631 (1983).

    Google Scholar 

  20. S. Leistikow, I. Wolf, and H. J. Grabke,Werkst. Korros. 38, 556 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh Raman, R.K., Gnanamoorthy, J.B. & Roy, S.K. Oxidation behavior of 2.25Cr-1Mo steel with prior tempering at different temperatures. Oxid Met 40, 21–36 (1993). https://doi.org/10.1007/BF00665257

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00665257

Key words

Navigation