Skip to main content
Log in

Mixed-oxidant attack of high-temperature alloys in carbon- and oxygen-containing environments

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The corrosive degradation of high-temperature alloys in environments containing more than one oxidant cannot, in general, be predicted from a knowledge of the response of the materials to the individual oxidants. In the present study, the phenomenological changes associated with the degradation of iron-nickel-chromium base alloys in carbon-oxygen environments have been investigated by examining the microstructural changes in samples exposed to such environments for extended periods of time. The results of these studies have led to the formulation of a model which proposes that the material exposed to the reaction environment experiences five stages of microstructural changes close to the surface before severe degradation sets in. The end of Stage V is the start of severe degradation, which contributes to a complete modification of the microstructure. This, in turn, leads to a rapid deterioration of the mechanical properties of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. S. Pettit, J. A. Goebel, and G. W. Goward,Corr. Sci. 9, 903 (1969).

    Google Scholar 

  2. A. Rahmel,Corr. Sci. 13, 125 (1973).

    Google Scholar 

  3. J. A. Colwell and R. A. Rapp,Met. Trans. Met. Trans. A 17A, 1065 (1986).

    Google Scholar 

  4. J. D. Giacobbe,Trans. ASM 45, 134 (1953).

    Google Scholar 

  5. A. F. Gards and M. W. Mallett,Trans. ASM 52, 1027 (1960).

    Google Scholar 

  6. K. Muller,Nickel-Berichte 26, 121 (1968).

    Google Scholar 

  7. W. F. Holcomb,Nucl. Eng. Design 6, 264 (1967).

    Google Scholar 

  8. C. T. Fujii and R. A. Meussner,J. Electrochem. Soc. 114, 435 (1967).

    Google Scholar 

  9. K. Bungardt, E. Kunze, and E. H. Krefeld,Arch. Eisenhuttenwes. 29, 190 (1958).

    Google Scholar 

  10. H. E. Buhler, A. Rahmel, and H. J. Schuller,Arch. Eisenhuttenwes. 38, 223 (1967).

    Google Scholar 

  11. Vyklicky and M. Mericka,Werkst. Korr. 20, 931 (1969).

    Google Scholar 

  12. E. Staska, R. Bloch, and A. Kulmburg,Mikrochimica Acta (Wein) Suppl. 5, 111 (1974).

    Google Scholar 

  13. H. Lewis,Brit. Corr. Journal 3, 166 (1968).

    Google Scholar 

  14. H. J. Grabke, U. Gravenhorst, and W. Steinkusch,Werkst. Korr. 27, 291 (1976).

    Google Scholar 

  15. H. J. Grabke and A. Schnaas, “Alloy 800,”Proc. Petten Int. Conf. (North-Holland, Amsterdam, 1978), p. 195.

    Google Scholar 

  16. A. Schnaas and H. J. Grabke,Werkst. Korr. 29, 635 (1978).

    Google Scholar 

  17. R. B. Snyder, K. Natesan, and T. F. Kassner,J. Nucl. Mat. 50, 259 (1974).

    Google Scholar 

  18. A. Gala,Werkst. Korr. 26, 115 (1975).

    Google Scholar 

  19. J. Perkins and A. Goldberg,Oxid. Metals 11, 23 (1977).

    Google Scholar 

  20. U. Gravenhorst and W. Steinkusch,Arch. Eisenhuttenwes. 46, 397 (1975).

    Google Scholar 

  21. W. Steinkusch,Werkst. Korr. 28, 1 (1977).

    Google Scholar 

  22. H. J. Grabke, R. Moller, and A. Schnaas,Werkst. Korr. 30, 794 (1979).

    Google Scholar 

  23. J. M. Harrison, J. F. Norton, R. T. Derricott, and J. B. Marriott,Werkst. Korr. 30, 785 (1979).

    Google Scholar 

  24. W. Steinkusch,Werkst. Korr. 30, 837 (1979).

    Google Scholar 

  25. M. Woulds,Development of Thermal Fatigue-Resistant Castings for Ethylene Converter Furnaces (Certified Alloys, Inc., Tech. Report, Long Beach, California, 1977).

    Google Scholar 

  26. N. Persson, Sandvik Lecture No. 56-6E, FSI (October 1976).

  27. R. Petkovic-Luton,Can. Met. Quart. 18, 165 (1979).

    Google Scholar 

  28. T. A. Ramanarayanan and R. Petkovic-Luton,Corrosion 37, 712 (1981).

    Google Scholar 

  29. A. Schnaas and H. J. Grabke,Oxid. Met. 12, 387 (1978).

    Google Scholar 

  30. G. C. Wood,Oxid. Met. 2, 11 (1970).

    Google Scholar 

  31. R. Benz, J. F. Elliott, and J. Chipman,Met. Trans. 5, 2235 (1974).

    Google Scholar 

  32. F. N. Mazandarany and R. D. Pehlke,Met. Trans. 4, 2067 (1973).

    Google Scholar 

  33. C. Wagner,Z. Elektrochem. 63, 772 (1959).

    Google Scholar 

  34. R. Rapp,Corrosion 21, 382 (1965).

    Google Scholar 

  35. T. A. Ramanarayanan and D. J. Srolovitz,J. Electrochem. Soc. 132, 2268 (1985).

    Google Scholar 

  36. M. T. Hepworth, R. P. Smith, and E. T. Turkdogan,Trans. Met. Soc. AIME 236, 1278 (1966).

    Google Scholar 

  37. J. H. Swisher and E. T. Turkdogan,Trans. Met. Soc. AIME 239, 426 (1967).

    Google Scholar 

  38. C. Wells, W. Batz, and R. F. Mehl,Trans. Met. Soc. AIME 188, 553 (1950).

    Google Scholar 

  39. M. Waldenstrom,Met. Trans. 8A, 1963 (1977).

    Google Scholar 

  40. F. N. Mazandarany and R. D. Pehlke,J. Electrochem. Soc. 121, 711 (1974).

    Google Scholar 

  41. A. D. Kulkarni and W. L. Worrell,Met. Trans. 3, 2363 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petkovic-Luton, R., Ramanarayanan, T.A. Mixed-oxidant attack of high-temperature alloys in carbon- and oxygen-containing environments. Oxid Met 34, 381–400 (1990). https://doi.org/10.1007/BF00664423

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00664423

Key words

Navigation