Skip to main content
Log in

Characterization of the initial oxide formed on annealed and unannealed 20Cr-25Ni-Nb-stabilized steel in 50 torr CO2 at 973 K

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation of annealed and unannealed 20Cr-25Ni-Nb (wt.%) steel in 50 torr CO2 at 973 K has been studied “in situ” using X-ray photoelectron spectroscopy with a view to the characterization of the chemical composition and nature of the oxides formed. The oxide first formed on the annealed steel is shown to be iron rich. Analysis of the bulk oxide using a variety of different spectroscopic techniques including X-ray diffraction, energy dispersive X-ray analysis, and scanning Auger microscopy showed that virtually all of the oxide scale formed after 100hr is a spinel of the type (Fe)Fe2−x)CrxO4 and is composed of an outer, iron-rich layer covering an iron/chromium-rich layer. By contrast, the oxide first formed on the unannealed steel is chromium rich, and is shown to be patchy consisting of a mixture of different oxides. This layer changes on further oxidation to develop into a manganese-iron-chromium spinel, which is present as the major oxide phase after 100 hr. The reasons for these differences are discussed, and it is argued that a major influence on oxidation behavior is the presence of cold work in the unannealed steel enhanc ing the diffusion of chromium to the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Tyzack, C. S. Campbell, and F. W. Trowse,J. Br. Nucl. Energy Soc. 246 (1963).

  2. J. H. Gittus, inProceedings of the International Conference on Physical Metallurgy of Reactor Fuel Elements, J. E. Harris and E. C. Sykes, eds. (The Metals Society, London, England 1975), p. 369.

    Google Scholar 

  3. J. S. Waddington and R. B. Jones,ibidin., p. 374.

    Google Scholar 

  4. M. V. Speight and J. S. Waddington,Nucl. Energy 19, 273 (1980).

    Google Scholar 

  5. J. M. Francis and W. H. Whitlow,J. Iron Steel Inst. 203, 468 (1965).

    Google Scholar 

  6. J. M. Francis, C. J. Lee, and J. H. Buddery,J. Iron Steel Inst. 206, 921 (1968).

    Google Scholar 

  7. F. H. Fern and J. E. Antill,Corr. Sci. 10, 649 (1970).

    Google Scholar 

  8. J. E. Antill, C. S. Campbell, D. Goodison, W. B. Jepson, and G. C. Stevens, inProceedings of the 3rd Geneva Conference on the Peaceful Uses of Atomic Energy 9, 523 (1964).

    Google Scholar 

  9. W. B. Jepson, J. E. Antill, and J. B. Warburton,Br. Corr. J. 1, 15 (1965).

    Google Scholar 

  10. J. M. Francis,Br. Corr. J. 3, 113 (1968).

    Google Scholar 

  11. J. M. Francis, M. T. Curtis, and D. A. Hilton,J. Nucl. Mat. 41, 203 (1971).

    Google Scholar 

  12. H. E. Evans, R. Hales, D. A. Hilton, R. A. Holm, G. Knowles, and R. J. Pearce, inCorrosion of Steels in CO 2, D. R. Holmes, R. B. Hill, and L. M. Wyatt, eds. (British Nuclear Energy Society, London, England 1974), p. 284.

    Google Scholar 

  13. H. E. Evans, D. A. Hilton, and R. A. Holm,Oxid. Met. 10, 149 (1976).

    Google Scholar 

  14. P. Skeldon, J. M. Calvert, and D. G. Lees,Proc. Roy. Soc. A292, 545 (1980).

    Google Scholar 

  15. P. A. Tempest and R. K. Wild,J. Nucl. Mat. 102, 183 (1981).

    Google Scholar 

  16. P. A. Tempest and R. K. Wild,Oxid. Met. 17, 345 (1982).

    Google Scholar 

  17. G. C. Allen, P. M. Tucker, and R. K. Wild,Surface Sci. 68, 469 (1977).

    Google Scholar 

  18. C. D. Wagner, L. E. Davis, M. V. Zeller, J. A. Taylor, R. H. Ramond, and L. H. Gale,Surf. Interface Anal. 3, 211 (1981).

    Google Scholar 

  19. M. Oku, K. Hirokawa, and S. Ikeda,J. Electron Spectrosc. Relat. Phenom. 7, 465 (1975).

    Google Scholar 

  20. C. N. R. Rao, D. D. Sarma, S. Vasudevan, and M. S. Hegde,Proc. Roy. Soc. A367, 239 (1979).

    Google Scholar 

  21. H. K. Hu and J. W. Rabalais,Surface Sci. 107, 376 (1981).

    Google Scholar 

  22. G. C. Allen, P. M. Tucker, and R. K. Wild,J. Chem. Soc. Faraday Trans II 74, 1128 (1978).

    Google Scholar 

  23. G. C. Allen, P. M. Tucker, and R. K. Wild,Philos. Mag. B 46, 411 (1982).

    Google Scholar 

  24. C. R. Brundle, T. J. Chuang, and K. Wandelt,Surface Sci. 68, 459 (1977).

    Google Scholar 

  25. G. C. Allen, P. J. F. Harris, and G. A. Swallow,Surface Technol. 6, 111 (1977).

    Google Scholar 

  26. G. C. Allen and G. A. Swallow,Oxid. Met. 17, 141 (1982).

    Google Scholar 

  27. J. S. Waddington and R. B. Jones, in Ref. 2, p. 374.

    Google Scholar 

  28. R. K. Wild,Vacuum 31, 183 (1981).

    Google Scholar 

  29. R. L. Cowan and C. S. Tedman, Jr., inAdvances in Corrosion Science and Technology, M. G. Fontana and R. W. Staehle, eds. (Plenum Press, New York, 1973), Vol. 3, p. 293.

    Google Scholar 

  30. H. E. Evans, D. A. Hilton, R. A. Holm, and S. J. Webster,Oxid. Met. 14, 235 (1980).

    Google Scholar 

  31. R. C. Lobb and H. E. Evans,Corr. Sci. 23, 55 (1983).

    Google Scholar 

  32. R. C. Lobb and H. E. Evans,Corr. Sci. 24, 385 (1984).

    Google Scholar 

  33. M. P. Seah,Surf. Interface Anal. 2, 222 (1980).

    Google Scholar 

  34. P. A. Tempest and R. K. Wild,Oxid. Met. 23, 207 (1985).

    Google Scholar 

  35. P. A. Tempest and R. K. Wild, CEGB Report RD/B/5179/N81 (1981).

  36. P. A. Tempest and R. K. Wild (1982) unpublished.

  37. R. A. Holm and H. E. Evans (1984) unpublished.

  38. R. Hales,Werkstoffe Korr. 29, 393 (1978).

    Google Scholar 

  39. J. C. P. Garrett, M. G. Angell, and A. Whittaker, inProceedings of the Conference on Gas-Cooled Reactors Today (British Nuclear Energy Society, London, England 1982), Vol. 2, p. 231.

    Google Scholar 

  40. A. Atkinson, R. I. Taylor, and A. E. Hughes,Philos. Mag.,A 45, 823 (1982).

    Google Scholar 

  41. A. Atkinson, M. L. O'Dwyer, and R. I. Taylor,J. Mat. Sci. 18, 2371 (1983).

    Google Scholar 

  42. A. F. Smith and R. Hales, CEGB Report RD/B/N3625 (1976).

  43. L. V. Azaroff,J. Appl. Phys. 32, 1638 (1961).

    Google Scholar 

  44. M. G. C. Cox, B. McEnaney, and V. D. Scott,Philos. Mag. 29, 585 (1974).

    Google Scholar 

  45. M. G. C. Cox, B. McEnaney, and V. D. Scott,Philos. Mag. 26, 839 (1972).

    Google Scholar 

  46. M. Robbins, G. K. Wertheim, R. C. Sherwood, and D. N. E. Buchanan,J. Phys. Chem. Solids 32, 717 (1971).

    Google Scholar 

  47. R. K. Wild,Corr. Sci. 17, 87 (1977).

    Google Scholar 

  48. R. K. Wild,Corr. Sci. 14, 575 (1974).

    Google Scholar 

  49. R. C. Lobb and H. E. Evans,Met. Sci. 15, 14 (1981).

    Google Scholar 

  50. J. M. Francis,J. Iron Steel Inst. 204, 910 (1966).

    Google Scholar 

  51. G. C. Wood, J. A. Richardson, M. G. Hobby, and J. Boustead,Corr. Sci. 9, 659 (1969).

    Google Scholar 

  52. D. L. Douglass and J. S. Armijo,Oxid. Met. 2, 207 (1970).

    Google Scholar 

  53. C. E. Lowell,Oxid. Met. 7, 95 (1973).

    Google Scholar 

  54. H. E. Evans, D. A. Hilton, R. A. Holm, and S. J. Webster,Oxid. Met. 19, 1 (1983).

    Google Scholar 

  55. A. Kumar and D. L. Douglass,Oxid. Met. 10, 1 (1976).

    Google Scholar 

  56. G. C. Allen, R. K. Wild, and M. Weiss,Philos. Mag. A 48, 373 (1983).

    Google Scholar 

  57. E. C. Bain, R. H. Aborn, and J. B. Rutherford,Trans. Am. Soc. Steel Treating 21, 481 (1933).

    Google Scholar 

  58. J. Winton, M. M. Haberlin, D. Rhodes, R. B. Jones, J. S. Waddington, and A. C. Roberts,International Conference on Nuclear Fuel Performance (British Nuclear Energy Society, London, England 1973), Vol. 7, Chapter 1.

    Google Scholar 

  59. T. Healey, A. F. Brown, and M. V. Speight, in Ref. 2, p. 386.

    Google Scholar 

  60. G. C. Allen, P. A. Tempest, J. W. Tyler, and R. K. Wild,Oxid. Met. 21, 187 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyler, J.W. Characterization of the initial oxide formed on annealed and unannealed 20Cr-25Ni-Nb-stabilized steel in 50 torr CO2 at 973 K. Oxid Met 24, 149–176 (1985). https://doi.org/10.1007/BF00664230

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00664230

Key words

Navigation