Skip to main content
Log in

Structural Transformations and Tribological Effects in the Surface Layer of Austenitic Chrome-Nickel Steel Initiated by Nanostructuring and Oxidation

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Metallography, electron microscopy, and X-ray diffraction are used to study the effect of preliminary plastic deformation in the friction-contact zone on the structural transformations and wear resistance of 12Cr19N9T austenitic stainless steel subjected to subsequent oxidation in air at temperatures of 300–800°C for 1 h. Severe deformation under dry sliding friction produces a two-phase (γ + α) nanocrystalline structure in a ~10-μm-thick surface layer of the steel. The microhardness is 5.2 GPa. Subsequent oxidation at 300–500°C causes an additional increase in the microhardness of the deformed surface layer of steel to the value of 7.0 GPa. This is due to the active saturation of austenite and deformation-induced α'-martensite with oxygen atoms, which rapidly diffuse deep into the metal along the grain boundaries. The oxygen concentration in the surface layer and steel wear products reaches 8.5 wt %. The atoms of the dissolved oxygen efficiently pin dislocations in the γ- and α' phases, increasing the strength and wear resistance of the surface of the 12Cr19N9T steel. Oxidation at 550–800°C results in the formation of a large number of Fe3O4 (magnetite) nanoparticles, which increase the resistance of the steel to thermal softening and its wear resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. L. G. Korshunov, A. V. Makarov, and N. L. Chernenko, in Development of Ideas of Academician V. D. Sadovskii. Collected Works (IFM UrO RAN, Ekaterinburg, 2008), p. 218 [in Russian].

    Google Scholar 

  2. L. G. Korshunov, V. A. Shabashov, N. L. Chernenko, and V. P. Pilyugin, Met. Sci. Heat Treat. 50, 583 (2008).

    Article  CAS  Google Scholar 

  3. R. Z. Valiev and I. V. Aleksandrov, Nanostructured Materials Obtained by Severe Plastic Deformation (Logos, Moscow, 2000) [in Russian].

    Google Scholar 

  4. R. Z. Valiev and O. A. Kaibyshev, Grain Boundaries and Properties of Metals (Metallurgiya, Moscow, 1987) [in Russian].

    Google Scholar 

  5. M. Shafiei and A. T. Alpas, Metall. Mater. Trans. A 38 (7), 1621 (2007).

    Article  Google Scholar 

  6. E. Metin and O. T. Inal, Metall. Mater. Trans. A 20, 1819 (1989).

    Article  Google Scholar 

  7. L. G. Korshunov, V. G. Pushin, and N. L. Chernenko, Phys. Met. Metallogr. 113, 629 (2012).

    Article  Google Scholar 

  8. L. G. Korshunov and N. L. Chernenko, Phys. Met. Metallogr. 114, 789 (2013). https://doi.org/10.7868/S0015323013070061

    Article  Google Scholar 

  9. L. G. Korshunov and N. L. Chernenko, Phys. Met. Metallogr. 115, 1027 (2014). https://doi.org/10.7868/S001532301410009X

    Article  CAS  Google Scholar 

  10. L. G. Korshunov and N. L. Chernenko, Phys. Met. Metallogr. 116, 512 (2015). https://doi.org/10.7868/S0015323015050095

    Article  Google Scholar 

  11. L. G. Korshunov, N. L. Chernenko, I. G. Brodova and I. G. Shirinkina, Phys. Met. Metallogr. 118, 1113 (2017). https://doi.org/10.17804/2410-9908.2017.3.006-014

    Article  CAS  Google Scholar 

  12. P. N. Belkin, A. M. Borisov, and S. A. Kusmanov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 10, 516 (2016). https://doi.org/10.1134/S1027451016030058

    Article  CAS  Google Scholar 

  13. L. I. Mirkin, Handbook on X-ray Diffraction Analysis of Polycrystalline Materials (Fizmatlit, Moscow, 1961; Plenum, New York, 1964).

  14. F. F. Khimushin, Stainless Steels (Metallurgiya, Moscow, 1967) [in Russian].

    Google Scholar 

  15. V. V. Sagaradze and A. I. Uvarov, Strengthening and Properties of Austenitic Steels (Red.-Izdat. Otd. Ural. Otd. Ross. Akad. Nauk, Ekaterinburg, 2013) [in Russian].

    Google Scholar 

  16. R. W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials (Wiley, New York, 1996, 4th ed.; Metallurgiya, Moscow, 1989).

  17. A Handbook for Chemists (Khimiya, Moscow, 1968), 2nd ed., Vol. 5 [in Russian].

  18. F. P. Bowden and D. Tabor, The Friction and Lubrication of Solids (Clarendon Press, Oxford, 1964; Mashinostroenie, Moscow, 1968).

Download references

ACKNOWLEDGMENTS

Electron microscopy was carried out at the department of electron microscopy of CCU “Testing center of nanotechnologies and prospective materials” of IMP UrBr RAS.

Funding

This work was carried out within the scope of state task “Structure” no. АААА-А18-118020190116-6 and Complex program of UrBr RAS no. 18-10-2-39.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. G. Korshunov or N. L. Chernenko.

Additional information

Translated by A. Bannov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korshunov, L.G., Chernenko, N.L. Structural Transformations and Tribological Effects in the Surface Layer of Austenitic Chrome-Nickel Steel Initiated by Nanostructuring and Oxidation. J. Surf. Investig. 14, 632–638 (2020). https://doi.org/10.1134/S1027451020030301

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451020030301

Keywords:

Navigation