Skip to main content
Log in

Photoperiodic determination of insect development and diapause

V. Diapause, crcadian rhythms, and phase response curves, according to the dual system theory

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

The Dual System Theory of photoperiodic time measurement is shown to provide a satisfactory basis for the interpretation of: (1) photoperiodic determination of diapause; (2) effects of different photoperiodic regimes on circadian rhythms of adult eclosion; and (3) the phase response curve. A fundamental unity of photoperiodic time measurement in a wide variety of organisms is strongly suggested by the Dual System Theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adkisson, P.L.: Internal clocks and insect diapause. Science154, 234–241 (1966)

    Google Scholar 

  • Aschoff, J.: Response curves in circadian periodicity. In: Circadian clocks (J. Aschoff, ed.), pp. 95–111. Amsterdam: North Holland Publ. 1965

    Google Scholar 

  • Beck, S.D.: Insect photoperiodism, 280 pp. New York and London: Academic Press 1968

    Google Scholar 

  • Beck, S.D.: Photoperiodic determination of insect development and diapause. I. Oscillators, hour-glasses, and a determination model. J. comp. Physiol.90, 275–295 (1974a)

    Google Scholar 

  • Beck, S.D.: Photoperiodic determination of insect development and diapause. II. The determination gate in a theoretical model. J. comp. Physiol.90, 297–310 (1974b)

    Google Scholar 

  • Beck, S.D.: Photoperiodic determination of insect development and diapause. III. Effects of nondiel photoperiods. J. comp. Physiol.103, 227–245 (1975)

    Google Scholar 

  • Beck, S.D.: Photoperiodic determination of insect development and diapause. IV. Effects of skeleton photoperiods. J. comp. Physiol.105, 267–277 (1976)

    Google Scholar 

  • Brinkmann, K.: Metabolic control of temperature compensation in the circadian rhythm ofEuglena gracilis. In: Biochronometry (M. Menaker, ed.), pp. 567–589. Washington: Nat. Acad. Sci. 1971

    Google Scholar 

  • Bünning, E.: Die endonome Tagesrhythmik als Grundlage der photoperiodischen Reaktion. Ber. dtsch. bot. Ges.54, 590–607 (1936)

    Google Scholar 

  • Bünning, E.: Circadian rhythms and the time measurements in photoperiodism. Cold Spr. Harb. Symp. quant. Biol.25, 249–256 (1960)

    Google Scholar 

  • Bünning, E.: The physiological clock, 145 pp. New York: Academic Press 1964

    Google Scholar 

  • Bünning, E.: Common features of photoperiodism in plants and animals. Photochem. Photobiol.9, 219–228 (1969)

    Google Scholar 

  • Bünning, E., Joerrens, G.: Tagesperiodische antagonistische Schwankungen der Blauviolett- und Gelbrot-Empfindlichkeit als Grundlage der photoperiodischen Diapause-Induktion beiPieris brassicae. Z. Naturforsch.15b, 205–213 (1960)

    Google Scholar 

  • DeCoursey, P.J.: Effect of light on the circadian activity rhythm of the flying squirrel,Glaucomys volans. Z. vergl. Physiol.44, 331–354 (1961)

    Google Scholar 

  • Hastings, J.W., Sweeney, B.M.: A persistent diurnal rhythm of luminescence inGonyaulax polyedra. Biol. Bull.115, 440–458 (1958)

    Google Scholar 

  • Menaker, M., Eskin, A.: Circadian clock in photoperiodic time measurements: A test of the Bünning hypothesis. Science157, 1182–1185 (1967)

    Google Scholar 

  • Minis, D.H.: Parallel peculiarities in the entrainment of a circadian rhythm and photoperiodic induction in the pink bollworm (Pectinophora gossypiella). In: Circadian clocks (J. Aschoff, ed.), pp. 333–343. Amsterdam: North Holland Publ. 1965

    Google Scholar 

  • Pittendrigh, C.S.: Circadian rhythms and circadian organization of living systems. Cold Spr. Harb. Symp. quant. Biol.25, 159–182 (1960)

    Google Scholar 

  • Pittendrigh, C.S.: The circadian oscillation inDrosophila pupae: A model for the photoperiodic clock. Z. Pflanzenphysiol.54, 275–307 (1966)

    Google Scholar 

  • Pittendrigh, C.S.: Circadian surfaces and the diversity of possible roles of circadian organization in photoperiodic induction. Proc. nat. Acad. Sci. (Wash.)69, 2734–2737 (1972)

    Google Scholar 

  • Pittendrigh, C.S., Minis, D.H.: The entrainment of circadian oscillations by light and their role as photoperiodic clocks. Amer. Natur.98, 261–294 (1964)

    Google Scholar 

  • Pittendrigh, C.S., Minis, D.H.: The photoperiodic time measurement inPectinophora gossypiella and its relation to the circadian system in that species. In: Biochronometry (M. Menaker, ed.), pp. 212–247. Washington: Nat. Acad. Sci. 1971

    Google Scholar 

  • Sansum, E.L., King, J.R.: Photorefractoriness in a sparrow: Phases of circadian photosensitivity elucidated by skeleton photoperiods. J. comp. Physiol.98, 183–188 (1975)

    Google Scholar 

  • Saunders, D.S.: The photoperiodic clock in the fleshfly,Sarcophaga argyrostoma. J. Insect Physiol.19, 1941–1954 (1973)

    Google Scholar 

  • Saunders, D.S.: ‘Skeleton’ photoperiods and control of diapause and development in the fleshfly,Sarcophaga argyrostoma. J. comp. Physiol.97, 97–112 (1975)

    Google Scholar 

  • Truman, J.W., Sokolove, P.G.: Silk moth eclosion: Hormonal triggering of a centrally programmed pattern of behavior. Science175, 1491–1493 (1972)

    Google Scholar 

  • Zimmer, R.: Phasenverschiebung und andere Störlichtwirkungen auf die endogenen tagesperiodischen Blütenblattbewegungen vonKalanckoë blossfeldiana. Planta (Berl.)58, 283–300 (1962)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by the College of Agricultural and Life Sciences of the University of Wisconsin, and by a research grant (GM 07557) from the National Institutes of Health

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beck, S.D. Photoperiodic determination of insect development and diapause. J. Comp. Physiol. 107, 97–111 (1976). https://doi.org/10.1007/BF00663921

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00663921

Keywords

Navigation