Colloid and Polymer Science

, Volume 271, Issue 8, pp 774–779 | Cite as

Effects of micellar structure on solubilization ofn-octane andn-octanol

  • Yoshihiro Saito
  • M. Abe
  • T. Sato
Original Contributions

Abstract

The solubilization ofn-octane andn-octanol in nonionic micelles of octaethylene glycoln-alkyl ethers was investigated by means of various techniques including solubilization, fluorescence, and dynamic light-scattering measurement. With respect to the effect of alkyl chain length of the surfactants, different solubilization behavior was observed betweenn-octane andn-octanol. That is to say, it was shown that the solubilization ofn-octane increases with an increase in the alkyl chain length, while that ofn-octanol decreases. An interpretation of these solubilization mechanisms is explained from the standpoint of the volume of hydrophobic and hydrophilic regions in a micelle.

Key words

Solubilization micellar structure n-octane n-octanol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Klevens HB (1950) Chem Rev 47:1Google Scholar
  2. 2.
    Schick MJ (1967) Nonionic surfactants. Marcel Dekker, New York, pp 558–603Google Scholar
  3. 3.
    Hoiland H, Ljosland E, Backlund S (1984) J Colloid Interface Sci 101:467Google Scholar
  4. 4.
    Malliaris A (1987) Adv Colloid Interface Sci 27:153Google Scholar
  5. 5.
    Abe M, Tokuoka Y, Uchiyama H, Ogino K (1990) Jpn Oil Chem Soc 39:565Google Scholar
  6. 6.
    Ogino K, Abe M, Takesita N (1976) Bull Chem Soc Jpn 49:3679Google Scholar
  7. 7.
    Zhou Z, Chu B (1988) J Colloid Interface Sci 126:171Google Scholar
  8. 8.
    Abe M, Yamazaki T, Tada K, Ogino K (1990) Zairyo Gijutsu 8:313Google Scholar
  9. 9.
    Ogino K, Nakamae M, Abe M (1989) J Phys Chem 93:3704Google Scholar
  10. 10.
    Rushforth DS, Sanchez-Rubio M, Santos-Vidals LM, Wormuth KR, Kaler EW, Cuevas R, Puig JE (1986) J Phys Chem 90:6668Google Scholar
  11. 11.
    Sato T, Saito Y, Anazawa I (1988) J Chem Soc Faraday Trans 1 84:275Google Scholar
  12. 12.
    Birdi KS (1985) Progress Colloid Polym Sci 70:23Google Scholar
  13. 13.
    Zografi G, Yalkowsky SH (1972) J Pharm Sci 61:651Google Scholar
  14. 14.
    Schott H (1971) J Pharm Sci 60:1594Google Scholar
  15. 15.
    Lin SY, Yang JC (1987) Acta Pharm Technol 33:222Google Scholar
  16. 16.
    Iwadare Y, Ueda N, Okabe M (1987) Nihon Kaseigaku Kaishi 38:503Google Scholar
  17. 17.
    Blokhus AM, Hoiland H, Backlund SJ (1986) J Colloid Interface Sci 114:9Google Scholar
  18. 18.
    Meguro K, Takasawa Y, Kawahashi N, Tabata Y, Ueno M (1981) J Colloid Interface Sci 83:50Google Scholar
  19. 19.
    Barry BW, EL Eini DID (1976) J Pharm Pharmacol 28:210Google Scholar
  20. 20.
    Elworthy PH, Patel MS (1982) J Pharm Pharmacol 34:543Google Scholar
  21. 21.
    Zhao G-X, Li X-G, (1991) J Colloid Interface Sci 144:185Google Scholar
  22. 22.
    Turro NJ, Kuo P-L (1986) J Phys Chem 90:4205Google Scholar
  23. 23.
    Turro NJ, Kuo P-L (1986) Langmuir 2:438Google Scholar
  24. 24.
    Kandori K, McGreevy RJ, Schechter RS (1989) J Phys Chem 93:1506Google Scholar

Copyright information

© Steinkopff-Verlag 1993

Authors and Affiliations

  • Yoshihiro Saito
    • 1
  • M. Abe
    • 2
  • T. Sato
    • 1
  1. 1.College of PharmacyNihon UniversityFunabashi-shi, ChibaJapan
  2. 2.Faculty of Science and TechnologyScience University of TokyoChibaJapan

Personalised recommendations