Skip to main content
Log in

Effect of Amino Acids on Micellization, Surface Activity and Micellar Properties of Nonionic Surfactant Hexadecyl Alcohol Ethoxylate (25EO) in Aqueous Solutions

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

The effects of amino acids (dl-glycine, dl-alanine, dl-phenylalanine, dl-serine, l-leucine, l-aspartic acid, l-lysine) on the micellization, surface activity, viscometric and aggregation properties of hexadecyl alcohol polyethoxylate (25EO) in aqueous solution were studied. The critical micelle concentration and free energy of micellization were evaluated and discussed. The surface excess concentration, the minimum area per molecule, the surface pressure at the critical micelle concentration and the standard free energy of adsorption were obtained from surface activity studies. On the basis of the determination of the relative viscosities on concentration, the viscosity B-coefficients of the Jones–Dole semiempirical equation were calculated for the premicellar and postmicellar regions. The method of fluorescence quenching was used for determination of the micellar aggregation number of hexadecyl alcohol polyethoxylate (25EO) in aqueous solution in the presence of amino acids. It was found that among studied amino acids serine shows behavior that is different from that of the other neutral amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Banpial TS, Singh K, Banipal PK (2007) Volumetric investigation of interaction of acidic/basic amino acids with sodium acetate, sodium propionate and sodium butyrate in aqueous solutions. J Solut Chem 36:1635–1667

    Article  Google Scholar 

  2. Yan Z, Wang J, Kong W, Lu J (2004) Effect of temperature on volumetric and viscosity properties of some α-amino acids in aqueous calcium chloride solutions. Fluid Phase Equilib 215:143–150

    Article  CAS  Google Scholar 

  3. Badarayani R, Kumar A (2003) Effect of temperature on the volumetric properties of the l-alanine (1) + KCl (2) + H2O (3) system. J Chem Eng Data 48:664–668

    Article  CAS  Google Scholar 

  4. Badarayani R, Kumar A (2004) Effect of tetra-n-alkylammonium bromide on the volumetric properties of glycine, l-alanine and glycylglycine at T = 298.15 K. J Chem Thermodyn 36:49–58

    Article  CAS  Google Scholar 

  5. Badarayani R, Kumar A (2004) Viscometric study of glycine, l-alanine, glycylglycine in aqueous tetra-n-alkylammonium bromide Solutions at 298.15 K. J Chem Thermodyn 36:983–991

    Article  CAS  Google Scholar 

  6. Singh SK, Kundu A, Kishore N (2004) Interaction of some amino acids and glycine peptides with aqueous sodium dodecyl sulfate and cetyltrimethylammonium bromide at T = 298.15 K: a volumetric approach. J Chem Thermodyn 36:7–16

    Article  CAS  Google Scholar 

  7. Carnero-Ruiz C, Hierrezuelo JM, Molina-Bolívar JA (2008) Effect of glycine on the surface activity and micellar properties of N-decanoyl-N-methylglucamide. Colloid Polym Sci 286:1281–1289

    Article  CAS  Google Scholar 

  8. Adamson AW (1976) Physical chemistry of surfaces. Wiley, New York

    Google Scholar 

  9. Luethi P, Luisi PL (1984) Enzymatic synthesis of hydrocarbon-soluble peptides with reverse micelles. J Am Chem Soc 106:7285–7286

    Article  CAS  Google Scholar 

  10. Touitou E, Levi-Schaffer F, Dayan N, Alhaiquem F, Riccieri F (1994) Modulation of caffeine skin delivery by carrier design: liposomes versus permeation enhancers. Int J Pharm 103:131–136

    Article  CAS  Google Scholar 

  11. Jansen J, Treiner C, Vaution C, Puisieux F (1994) Surface modification of alumina particles by nonionic surfactants: adsorption of steroids, barbiturates and pilocarpine. Int J Pharm 103:19–26

    Article  CAS  Google Scholar 

  12. Chen J, Shimura S, Kirimura K, Usami S (1994) Lipase production from hydrocarbons by Trichosporon fermentans WU-C12 in the presence of surfactants. Biosci Biotechnol Biochem 58:773–775

    Article  CAS  Google Scholar 

  13. Forney CE, Glatz CE (1995) Extraction of charged fusion proteins in reversed micelles: comparison between different surfactant systems. Biotechnol Prog 11:260–264

    Article  CAS  Google Scholar 

  14. Rosen MJ (2004) Surfactants and interfacial phenomena, 3rd edn. Wiley, New York

    Book  Google Scholar 

  15. Shivaji SK, Hassan PA, Rakshit AK (2007) Surface activity and association behavior of nonaoxyethylene n-Dodecylether in aquo amino acid medium: tensiometry, small-angle neutron scattering, dynamic light scattering and viscosity studies. Colloid Surf A 308:100–110

    Google Scholar 

  16. Dash U, Meher J, Mirsa PK (2013) Organization of amphiphiles, Part XII: studies on the interaction of glycine with aqueous micelles of polyoxyethylated nonylphenols. J Mol Liq 177:317–324

    Article  CAS  Google Scholar 

  17. Ali A, Tariq M, Patel R, Ittoo FA (2008) Interaction of glycine with cationic, anionic, and nonionic surfactants at different temperatures: a volumetric, viscometric, refractive index, conductometric, and fluorescence probe study. Colloids Polym Sci 286:183–190

    Article  CAS  Google Scholar 

  18. Maltesh C, Somasundaran P (1992) Aggregation behavior of octyl-β-thioglucopyranoside in the presence of glycine. Colloids Surf A 69:167–172

    Article  CAS  Google Scholar 

  19. Rakshit AK, Sharma B (2003) The effect of amino acids on the surface and thermodynamic properties of poly[oxyethelene(10)] lauryl ether in aqueous solution. Colloid Polym Sci 281:45–51

    Article  CAS  Google Scholar 

  20. Nevolin FV (1966) Methods of surfactants purification. Chem J 11:445–448 (in Russian)

    CAS  Google Scholar 

  21. Vardanyan AH, Aghaganyan AE, Avetisova GE, Melqonyan LH, Chakhalyan AKh, Sagiyan AS (2008) “The method of synthesis of amino acids”. Patent of RA, No 2239, (in Armenian)

  22. Turro NJ, Yekta A (1978) Luminescent probes for detergent solutions. A simple procedure for determination of the mean aggregation number of micelles. J Am Chem Soc 100:5951–5953

    Article  CAS  Google Scholar 

  23. Pandey S, Acree WE Jr, Fetzer JC (1997) Cetylpyridinium chloride micelles as a selective fluorescence quenching solvent media for discriminating between alternant versus non-alternant polycyclic aromatic hydrocarbons. Talanta 45:39–45

    Article  CAS  Google Scholar 

  24. Tringali AE, Kim SK, Brenner HC (1999) ODMR and fluorescence studied of pyrene solubilized in anionic and cationic micelles. J Lumin 81:85–100

    Article  CAS  Google Scholar 

  25. Harutyunyan LR, Lachinyan ML, Harutyunyan RS (2013) Effect of ascorbic acid on the colloidal and micellar properties of anionic, cationic and nonionic surfactants: conductivity, volumetric, viscometric and fluorescence study. J Chem Eng Data 58:2998–3008

    Article  CAS  Google Scholar 

  26. Zana R (1996) Critical micellization concentration of surfactants in aqueous solutions and free energy of micellization. Langmuir 12:1208–1211

    Article  CAS  Google Scholar 

  27. Hoeiland HKS, Blokhus AM (2009) Handbook of Surface and Colloid Chemistry, 3rd ed., Taylor and Frances Group LLC London

  28. Nagarajan R, Wang C (2000) Theory of surfactant aggregation in water/ethylene glycol mixed solvents. Langmuir 16:5242–5251

    Article  Google Scholar 

  29. Das S, Mondal S, Ghosh S (2013) Physicochemical studies on the micellization of cationic, anionic and nonionic surfactants in water-polar organic solvent mixtures. J Chem Eng Data 58:2586–2595

    Article  CAS  Google Scholar 

  30. Sahoo L, Mirsa PK, Somasundaran P (2002) Organization of amphiphiles, Part-II—surface activity of polyoxyethylated alkyl phenols at air-water interface. Indian J Chem 41A:1402–1405

    CAS  Google Scholar 

  31. Mirsa PK, Panigrahi S, Dash U, Mondal AB (2010) Organization of amphiphiles. Part XI: physico-chemical aspects of mixed micellization involving normal conventional surfactant and a non-ionic gemini surfactant. J Colloid Interface Sci 345:392–401

    Article  Google Scholar 

  32. Myers D (1992) Surfactants science and technology, 2nd edn. VCH, New York

    Google Scholar 

  33. Dash U, Mirsa PK (2011) Organization of amphiphiles: XII. Evidence in favor of formation of hydrophobic complexes in aqueous solution. J Colloid Interface Sci 357:407–418

    Article  CAS  Google Scholar 

  34. Yuan HZ, Zhao S, Cheng GZ, Zhang L, Miao XJ, Mao SZ, You JY, Shen LF, Du YR (2001) Mixed micelles of Triton X-100 and cetyl trimethylammonium bromide in aqueous solution studied by 1H NMR. J Phys Chem B 105:4611–4615

    Article  CAS  Google Scholar 

  35. Makoto I, Yasushi M, Hiromo K (1997) Effect of hydrophobicity of amino acids on the structure of water. J Phys Chem B 101:7022–7026

    Article  Google Scholar 

  36. Harutyunyan NG, Harutyunyan LR, Harutyunyan RS (2010) Volumetric properties of amino acids in aqueous solution of nonionic surfactant. Thermochim Acta 498:124–127

    Article  CAS  Google Scholar 

  37. Jones G, Dole M (1929) The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. J Am Chem Soc 51:2950–2960

    Article  CAS  Google Scholar 

  38. Falkenhagen H, Dole M (1992) Die innere Reibung von Elektrolytischen und ihre Deutung nach der Debeschen Theorie. Z Physik 30:611–622

    Google Scholar 

  39. Erdey-Gruz T (1974) Transport phenomena in aqueous solutions. Akademiai Kiado, Budapest

    Google Scholar 

  40. Feakins D, Freemantle DJ, Lawrence KG (1974) Transition state treatment of the relative viscosity of electrolytic solutions. Applications to aqueous, non-aqueous and methanol + water systems. J Am Chem Soc Faraday Trans 70:795–806

    Article  CAS  Google Scholar 

  41. D’Errico G, Ciccarelli D, Ortona D (2005) Effect of glycerol on micelle formation by ionic and nonionic surfactants at 25 degree C. J Colloid Interface Sci 286:747–754

    Article  Google Scholar 

  42. Tanford C (1980) The hydrophobic effect. Wiley, New York

    Google Scholar 

  43. Das D, Ismail K (2008) Aggregation and adsorption properties of sodium dodecyl sulfate in water-acetamide mixtures. J Colloid Interface Sci 327:198–203

    Article  CAS  Google Scholar 

  44. Israelachvili JN (1991) Intermolecular and surface force, 2nd edn. Academic Press, London, pp 370–378

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lusine R. Harutyunyan.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harutyunyan, L.R. Effect of Amino Acids on Micellization, Surface Activity and Micellar Properties of Nonionic Surfactant Hexadecyl Alcohol Ethoxylate (25EO) in Aqueous Solutions. J Surfact Deterg 18, 73–81 (2015). https://doi.org/10.1007/s11743-014-1609-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-014-1609-y

Keywords

Navigation