Skip to main content
Log in

Comparison between the apparent chemical diffusion coefficient evaluated from relaxation experiments by means of electrical conductivity changes and the corresponding theoretical value for a pure and doped p-type oxide

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The chemical diffusion coefficient for a p-type oxide either pure or doped with an aliovalent impurity as evaluated from electrical conductivity changes in simulated relaxation experiments is compared with the corresponding theoretical values obtained on the basis of Fick's first law using a convenient model to represent the defect structure of the oxide. It is found that if the relaxation process is purely diffusion controlled, the experimental value of\(\tilde D\) obtained (\(\tilde D_\sigma \)) is in rather good agreement with the theoretical value calculated by considering the diffusion of lattice defects\(\tilde D\) rather than with that obtained by considering the diffusion of the prevailing electronic defects\(\tilde D_h \), even when the latter two values differ. This is shown to be the result of relatively small departures from a proportionality (for the pure oxide) or from a linear dependence (for a doped oxide) in the relationship between the deviation from stoichiometry δ and the concentration of the electron holes in restricted range of oxygen activity as used in relaxation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Gesmundo and F. Viani,J. Phys. Chem. Solids 42, 777 (1981).

    Google Scholar 

  2. F. Gesmundo,Solid State Ionics 12, 79 (1984).

    Google Scholar 

  3. F. Gesmundo,Solid State Ionics 13, 21 (1984).

    Google Scholar 

  4. F. Gesmundo,J. Phys. Chem. Solids, to appear.

  5. C. M. Osburn and R. W. Vest,J. Phys. Chem. Solids 32, 1343 (1971).

    Google Scholar 

  6. R. Dieckmann,Z. Phys. Chem. N. F. 107, 189 (1977).

    Google Scholar 

  7. C. R. Catlow, W. C. Mackrodt, M. J. Norgett, and A. M. Stoneham,Phil. Mag. A 40, 161 (1979).

    Google Scholar 

  8. C. R. A. Catlow and A. M. Stoneham,J. Am. Ceram. Soc. 64, 234 (1981).

    Google Scholar 

  9. C. Wagner, inProgress in Solid State Chemistry, J. O. McCaldin and G. Somorjai, eds. (Pergamon Press, New York, 1976), Vol. 10, p. 3.

    Google Scholar 

  10. P. Kofstad,Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides (Wiley-Interscience, New York, 1972).

    Google Scholar 

  11. N. L. Peterson and C. L. Wiley,J. Phys. Chem. Solids, to appear.

  12. J. Nowotny, J. Oblakowski, A. Sadowski, and J. B. Wagner, Jr.,Oxid. Met. 14, 437 (1980).

    Google Scholar 

  13. J. Nowotny and J. B. Wagner, Jr.,Oxid. Met. 15, 169 (1981).

    Google Scholar 

  14. J. Nowotny, J. Oblakowski, A. Sadowski, and J. B. Wagner, Jr.,Oxid. Met. 15, 191 (1981).

    Google Scholar 

  15. F. Gesmundo and F. Viani,J. Electrochem. Soc. 128, 470 (1981).

    Google Scholar 

  16. F. Gesmundo and F. Viani,J. Electrochem. Soc. 129, 622 (1982).

    Google Scholar 

  17. P. E. Childs and J. B. Wagner, Jr.,Heterogeneous Kinetics at Elevated Temperatures, G. R. Belton and W. L. Worrell, eds. (Plenum Press, New York, 1970), p. 269.

    Google Scholar 

  18. G. J. Yurek and H. Schmalzried,Ber. Bunsenges. Phys. Chem. 78, 1379 (1974).

    Google Scholar 

  19. G. J. Yurek and H. Schmalzried,Ber. Bunsenges. Phys. Chem. 79, 255 (1975).

    Google Scholar 

  20. W. Jost,Diffusion in Solids, Liquids, Gases (Academic Press, New York, 1960), p. 57.

    Google Scholar 

  21. G. J. Koel and P. J. Gellings,Oxid. Met. 5, 185 (1972).

    Google Scholar 

  22. J. Crank,The Mathematics of Diffusion (Oxford University Press, Oxford, 1956), p. 45.

    Google Scholar 

  23. F. Viani, V. Dovì, and F. Gesmundo,Oxid. Met. 21, 309 (1984).

    Google Scholar 

  24. F. Morin,Can. Met. Q. 14, 97 (1975).

    Google Scholar 

  25. F. Morin,J. Electrochem. Soc. 128, 2439 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gesmundo, F., Dovì, V. & Viani, F. Comparison between the apparent chemical diffusion coefficient evaluated from relaxation experiments by means of electrical conductivity changes and the corresponding theoretical value for a pure and doped p-type oxide. Oxid Met 23, 191–206 (1985). https://doi.org/10.1007/BF00659903

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00659903

Key words

Navigation