Skip to main content
Log in

Phenomenological theory of bulk diffusion in metal oxides

  • Thermal Properties
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Phenomenological description of bulk diffusion in oxide ceramics has been proposed. Variants of vacancy and vacancy-free diffusion models have been considered. In the vacancy models, ion migration is described as a fluctuation with the formation of a “liquid corridor,” along which the diffusion ion transport in a “melt” is performed, or, as a fluctuation with the formation of an “empty corridor,” in which the ion motion proceeds without activation. The vacancy-free model considers a fluctuation with the formation of a spherical liquid region whose sizes correspond to the first coordination sphere. It has been shown that both the vacancy models work in cubic metal oxides and the vacancy-free model is effective for describing diffusion in oxides having a noncubic structure. Detailed comparison of the models developed has been performed. It has been shown that the values of the activation energies for diffusion of metal and oxygen ions agree with the published data on bulk diffusion in stoichiometric oxide ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Mrowec, React. Solids 5, 241 (1988).

    Article  Google Scholar 

  2. R. H. Doremus, J. Appl. Phys. 100, 101301 (2006).

    Article  ADS  Google Scholar 

  3. A. H. Heuer, J. Eur. Ceram. Soc. 28, 1495 (2008).

    Article  Google Scholar 

  4. M. Hayoun and M. Meyer, Acta Mater. 56, 1366 (2008).

    Article  Google Scholar 

  5. J. H. Harding, J. Am. Ceram. Soc. 86, 554 (2003).

    Article  Google Scholar 

  6. A. Y. Neiman, Solid State Ionics 83, 263 (1996).

    Article  Google Scholar 

  7. E. Chen, T.-L. Tsai, and R. Dieckmann, Solid State Sci. 10, 735 (2008).

    Article  ADS  Google Scholar 

  8. M. T. Hutchings, J. Chem. Soc., Faraday Trans. 2 83, 1083 (1987).

    Article  Google Scholar 

  9. W. M. Robertson, J. Nucl. Mater. 30, 36 (1969).

    Article  ADS  Google Scholar 

  10. S. J. Dillon, M. Tang, W. C. Carter, and M. P. Harmer, Acta Mater. 55, 6208 (2007).

    Article  Google Scholar 

  11. V. V. Hoang and S. Kun Oh, Physica B (Amsterdam) 352, 342 (2004).

    Article  ADS  Google Scholar 

  12. V. V. Hoang, N. H. Tuan Anh, and H. Zung, Physica B (Amsterdam) 390, 17 (2007).

    Article  ADS  Google Scholar 

  13. C. Dumouchel and S. Grout, Int. J. Multiphase Flow 35, 952 (2009).

    Article  Google Scholar 

  14. J. Heulens, B. Blanpain, and N. Moelans, Acta Mater. 59, 2156 (2011).

    Article  Google Scholar 

  15. A. Ghoneim and O. A. Ojo, Comput. Mater. Sci. 50, 1102 (2011).

    Article  Google Scholar 

  16. L. B. Skinner, A. C. Barnes, P. S. Salmon, L. Hennet, H. E. Fischer, C. J. Benmore, S. Kohara, J. K. R. Weber, A. Bytchkov, M. C. Wilding, J. B. Parise, T. O. Farmer, I. Pozdnyakova, S. K. Tumber, and K. Ohara, Phys. Rev. B: Condens. Matter 87, 02401 (2013).

    Google Scholar 

  17. A. N. Larikov and V. I. Isaichev, Diffusion in Metals and Alloys: A Handbook (Naukova Dumka, Kiev, 1987) [in Russian].

    Google Scholar 

  18. B. S. Bokshtein and A. B. Yaroslavtsev, Diffusion of Atoms and Ions in Solids (Moscow Institute of Steel and Alloys, Moscow, 2005) [in Russian].

    Google Scholar 

  19. V. N. Chuvil’deev, Nonequilibrium Grain Boundaries in Metals: Theory and Applications (Fizmatlit, Moscow, 2004) [in Russian].

    Google Scholar 

  20. V. N. Chuvil’deev and E. S. Smirnova, Phys. Solid State 53 (4), 779 (2011).

    Article  ADS  Google Scholar 

  21. A Short Handbook of Physical and Chemical Quantities, Ed. by A. A. Ravdel’ and A. M. Ponomareva (ARIS, Moscow, 2010) [in Russian].

    Google Scholar 

  22. A. R. Andrievskii and I. I. Spivak, Strength of High-Melting Compounds and Materials on Their Base: A Reference Book (Metallurgiya, Chelyabinsk, 1989) [in Russian].

    Google Scholar 

  23. The Oxide Handbook, Ed. by G. V. Samsonov (Metallurgiya, Moscow, 1969; Springer, Berlin, 1982).

    Google Scholar 

  24. H. J. Frost, and M. F. Ashby, Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Pergamon, London, 1982; Metallurgiya, Chelyabinsk, 1989).

    Google Scholar 

  25. P. Kofstad, Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides (Wiley, New York, 1972; Mir, Moscow, 1975).

    Google Scholar 

  26. Handbook of Physical Quantities, Ed. by I.S.Grigoriev and E.Z.Meilikhov (Energoatomizdat, Moscow, 1991; CRC Press, Boca Raton, Florida, United States, 1997).

  27. J. Friedel, Dislocations (Pergamon, London, 1967; Mir, Moscow, 1967).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Chuvil’deev.

Additional information

Original Russian Text © V.N. Chuvil’deev, E.S. Smirnova, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 7, pp. 1436–1447.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuvil’deev, V.N., Smirnova, E.S. Phenomenological theory of bulk diffusion in metal oxides. Phys. Solid State 58, 1487–1499 (2016). https://doi.org/10.1134/S1063783416070118

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416070118

Navigation