Skip to main content
Log in

Kinetics of oxide equilibration in relaxation experiments with a partial degree of surface control under a Wagner-type rate law for the surface reaction

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The importance of the rate of the surface reaction on the kinetics of equilibration of an oxide with the surrounding atmosphere under isothermal conditions is examined by using a general expression of this reaction rate given by Wagner as a boundary condition to solve the relevant diffusion equation by numerical methods. Solutions are obtained for the ideal case of an oxide having a rather simple defect structure corresponding to that of cobalt oxide at high temperatures, but assuming a variable rate constant for the surface reaction, allowing it to change in a suitable range to obtain a change from a diffusion control to a mixed type of control. The effects of the surface reaction rate are discussed in relationship to the different factors affecting the final result, such as the value of the surface rate constant, the sample thickness, the oxygen pressure range examined, and the direction of the pressure change. The data calculated in this way are then analyzed according to the equation which applies for a simpler linear rate law, and it is shown that use of this procedure yields values of the chemical diffusion coefficient more accurate than the analysis made according to the assumption of apure diffusion control. Finally, the need of a more general type of regression analysis of relaxation data to obtain reliable estimates of the chemical diffusion coefficient in cases of mixed kinetic control in presence of a general type of surface rate law is pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. E. Childs and J. B. Wagner, Jr., inHeterogeneous Kinetics at Elevated Temperatures, G. R. Belton and W. L. Worrell, eds. (Plenum Press, New York, 1970), p. 269.

    Google Scholar 

  2. P. E. Childs, L. W. Laub, and J. B. Wagner, Jr.,Proc. Br. Ceram. Soc. 19, 29 (1971).

    Google Scholar 

  3. J. Crank,The Mathematics of Diffusion (Clarendon Press, Oxford, 1956).

    Google Scholar 

  4. P. F. J. Landler and K. L. Komarek,Trans. Metall. Soc. AIME 236, 138 (1966).

    Google Scholar 

  5. R. E. Carter and K. W. Lay,J. Nucl. Mat. 36, 77 (1970).

    Google Scholar 

  6. H. J. Grabke,Ber. Bunsenges. Physik Chem. 69, 49 (1965).

    Google Scholar 

  7. J. W. Laub and J. B. Wagner, Jr.,Oxid. Met. 7, 1 (1973).

    Google Scholar 

  8. I. Bransky, N. M. Tallan, J. M. Wimmer, and M. Gwishi,J. Am. Ceram. Soc. 54, 26 (1971).

    Google Scholar 

  9. C. Wagner,Ber. Bunsenges, Physik Chem. 70, 775 (1966).

    Google Scholar 

  10. J. Nowotny and J. B. Wagner, Jr.,Oxid. Met. 15, 169 (1981).

    Google Scholar 

  11. F. Gesmundo and F. Viani,J. Phys. Chem. Solids 128, 460 (1981).

    Google Scholar 

  12. H. S. Carslaw and J. C. Jaeger,Conduction of Heat in Solids (Oxford University Press, Oxford, 1947), p. 86.

    Google Scholar 

  13. J. Crank,The Mathematics of Diffusion (Clarendon Press, Oxford, 1956), p. 34, 56.

    Google Scholar 

  14. I. Bransky and A. Z. Hed,J. Am. Ceram. Soc. 51, 231 (1968).

    Google Scholar 

  15. J. R. Gavarri, C. Carel, and D. Weigel,J. Solid State Chem. 29, 81 (1979).

    Google Scholar 

  16. C. R. A. Catlow and A. M. Stoneham,J. Am. Cerman. Soc. 64, 234 (1981).

    Google Scholar 

  17. N. L. Peterson and W. K. Chen,J. Phys. Chem. Solids 43, 29 (1982).

    Google Scholar 

  18. P. Kofstad,J. Phys. Chem. Solids 44, 879 (1983).

    Google Scholar 

  19. P. Kofstad,Oxid. Met. 19, 129 (1983).

    Google Scholar 

  20. R. Dieckmann and M. Keller, paper presented at the 10th Int. Symp. on the Reactivity of Solids, Dijon, France, August 1984.

  21. J. B. Price and J. B. Wagner, Jr.,Z. Physik. Chem., N.F. 49, 257 (1966).

    Google Scholar 

  22. G. J. Koel and P. J. Gellings,Oxid. Met. 5, 185 (1972).

    Google Scholar 

  23. E. Fryt, S. Mrowec, and T. Walec,Oxid. Met. 7, 117 (1973).

    Google Scholar 

  24. J. M. Wimmer, R. N. Blumenthal, and I. Bransky,J. Phys. Chem. Solids 36, 269 (1975).

    Google Scholar 

  25. F. Morin,Can. Met. Q. 14, 105 (1975).

    Google Scholar 

  26. E. Fryt,Oxid. Met. 10, 311 (1976).

    Google Scholar 

  27. V. Chowdhry and R. L. Coble,J. Am. Ceram. Soc. 65, 336 (1982).

    Google Scholar 

  28. F. Morin and R. Dieckmann,Z. Phys. Chem. 86, 219 (1982).

    Google Scholar 

  29. G. Petot-Ervas, O. Radji, B. Sossa, and P. Ochin,Radiat. Effects 75, 301 (1982).

    Google Scholar 

  30. R. Dieckmann,Z. Phys. Chem. 107, 189 (1977).

    Google Scholar 

  31. R. F. Sincovec and N. K. Madsen,Software for Nonlinear Partial Differential Equations, Vol. 1 (1975), p. 232.

    Google Scholar 

  32. F. Viani, V. Dovi, and F. Gesmundo,Oxid. Met. 21, 309 (1984).

    Google Scholar 

  33. V. Dovì, F. Gesmundo, and F. Viani,Oxid. Met. 23, 35 (1985).

    Google Scholar 

  34. V. Dovì, F. Gesmundo, and F. Viani, to be published.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gesmundo, F., Viani, F. & Dovì, V. Kinetics of oxide equilibration in relaxation experiments with a partial degree of surface control under a Wagner-type rate law for the surface reaction. Oxid Met 23, 141–158 (1985). https://doi.org/10.1007/BF00659900

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00659900

Key words

Navigation