Skip to main content
Log in

SAXS data analysis of a lamellar two-phase system. Layer statistics and compansion

  • Original Contributions
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

An analysis of small angle x-ray scattering (SAXS) data from three injection molded poly(ethylene terephthalate) (PET) samples is carried out. Two of the samples are annealed at different temperatures. The chosen concept of data analysis is that of Ruland's interface distribution function (IDF) of lamellar two-phase systems. The IDF can be expanded into a series of distance distributions, containing the information on the topological properties of the ensemble of lamellar stacks in the semicrystalline sample.

The paper describes the stepwise refinement of a topological model. The final model is described by only few parameters of physical meaning. It unifies the well-known concepts of an ensemble of non-uniform stacks, finite stack size and one-dimensional paracrystalline disorder in an analytical expression. In order to deduce this expression, the concept of inhomogeneity (imagine a variation of the long period from stack to stack) is generally treated in terms of “compansion”, a suggested superposition principle. Its mathematical equivalent in one dimension is the Mellin convolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reinhold C, Fischer EW, Peterlin A (1964) J Appl Phys 35:71–74

    Google Scholar 

  2. Hall IH, Mahmoud EA, Carr PD, Geng YD (1987) Colloid Polym Sci 265:383–393

    Google Scholar 

  3. Strobl GR, Schneider MJ, Voigt-Martin IG (1980) J Polym Sci Phys 18:1361–1381

    Google Scholar 

  4. Voigt-Martin IG, Mandelkern L (1989) J Polym Sci B27:967–991

    Google Scholar 

  5. Hanna S, Windle AH (1988) Polymer 29:207–223

    Google Scholar 

  6. Strobl GR, Müller N (1973) J Polym Sci Phys 11:1219–1233

    Google Scholar 

  7. Porod G (1951) Colloid Polym Sci 124:83–114, pp 107–110

    Google Scholar 

  8. Stribeck N, Ruland W (1978) J Appl Cryst 11:535–539

    Google Scholar 

  9. Dehlinger U, Kochendörfer A (1939) Z Kristallogr 101:134–148

    Google Scholar 

  10. Kochendörfer A (1944) Z Kristallogr 105:393–480, pp 465–467

    Google Scholar 

  11. Tsvankin DYA, Zubov YUA, Kitaigorodskii AI (1968) J Polym Sci C16:4081–4091

    Google Scholar 

  12. Strobl GR (1973) J Appl Cryst 6:365–370

    Google Scholar 

  13. Brämer R (1974) Colloid Polym Sci 252:504–515

    Google Scholar 

  14. Kilian HG, Wenig W (1974) J Macromol Sci B9:463–482

    Google Scholar 

  15. Shibayama M, Hashimoto T (1986) Macromolecules 19:740–749

    Google Scholar 

  16. Vonk CG, Kortleve G (1967) Colloid Polym Sci 220:19–24

    Google Scholar 

  17. Ruland W (1977) Colloid Polym Sci 255:417–427

    Google Scholar 

  18. Ruland W (1971) J Appl Cryst 4:70–73

    Google Scholar 

  19. Polizzi S, Stribeck N, Zachmann HG, Bordeianu R (1989) Colloid Polym Sci 267:281–291

    Google Scholar 

  20. Caceci MS, Cacheris WP (1984) Byte 5:340–362

    Google Scholar 

  21. Draper NR, Smith H (1966) Applied Regression Analysis. John Wiley, New York, chap. 10, pp 263–306

    Google Scholar 

  22. Koberstein JT, Morra B, Stein RS (1980) J Appl Cryst 13:34–45

    Google Scholar 

  23. Wiegand W, Ruland W (1979) Progr Colloid Polym Sci 66:355–366

    Google Scholar 

  24. Siemann U, Ruland W (1982) Colloid Polym Sci 260:999–1010

    Google Scholar 

  25. Santa Cruz C, Stribeck N, Zachmann HG, Baltá Calleja FJ (1991) Macromolecules 24:5980–5990

    Google Scholar 

  26. Stribeck N (1989) Colloid Polym Sci 267:301–310

    Google Scholar 

  27. Stribeck N, Bösecke P, Polizzi S (1989) Colloid Polym Sci 267:687–701

    Google Scholar 

  28. Stribeck N (1992) Colloid Polym Sci 270:9–16

    Google Scholar 

  29. Zelen M, Severo NC (1968) In: Abramowitz M, Segun IA (ed.) Handbook of mathematical functions. Dover, New York, chap. 26: Probability functions

    Google Scholar 

  30. Titchmarsh EC (1948) Introduction to the Theory of Fourier Integrals, 2nd ed. Clarendon Press, Oxford, p 53

    Google Scholar 

  31. Marichev OI (1983) Handbook of Integral Transforms of Higher Transcendental Functions: Theory and Algorithmic Tables. Wiley, New York

    Google Scholar 

  32. Oberhettinger F (1973) Fourier Transforms of Distributions and Their Inverses — A Collection of Tables. Academic Press, New York, Theorem 4

    Google Scholar 

  33. Oberhettinger F (1974) Tables of Mellin Transforms. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stribeck, N. SAXS data analysis of a lamellar two-phase system. Layer statistics and compansion. Colloid Polym Sci 271, 1007–1023 (1993). https://doi.org/10.1007/BF00659290

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00659290

Key words

Navigation